
A NEW FORM OF

RECURSION

COMP 210 — 28 OCT 2005

SCHEME: THE STORY SO FAR

 Values
 simple (numbers, symbols, empty)
 compound (structures, lists)
 functions (lambda)

 Language
 Ways to work with values
 define, cond, local
 primitive functions

WHAT CAN WE DO?

 Simple math of the f(x) = x2 variety

(define (f x) (* x x))

 Structural recursion

;; A list is empty or (cons X list)


(define (f a-list) ;; f : [X]  ?
 (cond
 [(empty? a-list) …]
 [else … (first a-list) … (f … (rest a-list) …)]))

SO CAN WE DO ANYTHING?

 Yes, we can compute anything!

 (As long as it’s simple math.)

 (Or walking down a list.)

 (Or a family tree.)

 (Or counting natural numbers down to ‘Zero.)

 Is there nothing else?

GENIUS
WHAT ABOUT

INSPIRATION
CLEVERNESS

(ETC.)

EXPAND YOUR MIND

 And consider new types of
computation

…which do not fit “simple math” or
“structural recursion”.

PROBLEM #1: PHYSICS

 Can we figure out where an airborne object
will hit the ground?

 High school phyiscs: modeling motion
xn+1 = xn + ∆x

(read ∆x as “velocity”)

 But if we have acceleration, we need to
model how it changes velocity:

∆xn+1 = ∆xn + ∆(∆x)
(read ∆(∆x) as “acceleration”)

DEMO #1: LOOSE CANNONS

(ka-boom!)

THE SIMULATION
(define-struct obj (x y vx vy))
; sim : obj -> true
; repeatedly apply velocity to position, accel to velocity
; simulation stops when o hits the “ground” (y=0)
; assume fixed gravity in the y direction of -10 m/s
(define (sim o)
 (cond
 [(< (obj-y o) 0) true] ; stop when we hit the ground
 [else (and
 (draw o)
 (sim (make-obj
 (+ (obj-x o) (obj-vx o)) ; xn+1 = xn + ∆x
 (+ (obj-y o) (obj-vy o)) ; yn+1 = yn + ∆y
 (obj-vx o)
 (+ (obj-vy o) -10))))])) ; ∆yn+1 = ∆yn + ∆(∆y)

WHERE WAS THE TEMPLATE?

 We didn’t know how to write one
 There’s no data definition for “physics

simulation”
 …so it can’t be structural recursion

 But it IS recursive.
 Evidence: sim called sim again.
 So what do we call it?

 The book calls it
“GENERATIVE RECURSION”

TEMPLATE FOR THE
CANNON SIMULATION

 Instead of a cond based on structure:
 A cond based on an idea for simulating things

hitting the “ground”
1. Keep moving an object
2. If the object’s y-value goes below 0, stop

 We can write a template for all simulations
following this idea

(define (f o)
 (cond
 [(< (obj-y o) 0) …]
 [else … (f …) …]))

ALGORITHMS
THE STUDY OF

CLEVER IDEAS FOR SOLVING PROBLEMS

A FUNDAMENTAL TOPIC IN COMPUTER SCIENCE

SYSTEMS, NETWORKS, LANGUAGES, CRYPTO, ROBOTICS, &C.

(OUTSIDE OF COMPUTER SCIENCE, TOO!)

DIVIDE AND CONQUER

 A general class of algorithms

 If your problem is easy to solve, solve it and stop
 Otherwise, break it into strictly easier problems

 And recursively examine those problems
 If those problems are easy to solve …

 (I think you get the idea)

 Conveniently expressed as recursive functions

 Here’s a D&C algorithm for …

PROBLEM #2: SORTING

 THE PARTY HAT ALGORITHM

 For a line of people to be sorted by birthday,

 Pick someone to put on a party hat and shout out her birthday.

 Everyone whose birthday comes before hers: move to her right.

 Everyone whose birthday comes after: move to her left.

 Start the game over with the people on her left.

 Also start over with the people on her right.

 At any point, if the line of people is empty, for goodness’ sake, stop!

DEMO #2: THE PARTY HAT
ALGORITHM AT WORK

(hopefully Dan remembered the party hats)

THAT’S A NEAT ALGORITHM

 This is actually an “old” algorithm (1960)

(oh, and, it’s not called “the party hat algorithm”)

 It’s called QUICKSORT*
 … because it’s quick! It’s a lot better than

insertion sort, which we saw earlier.

* Invented by Sir C. A. R. Hoare, published in
Communications of the ACM, July 1961

TEMPLATE FOR
PARTY HAT QUICKSORT

 Our algorithm said that we’d stop on an
empty list, and perform a generative
recursion otherwise

;; qsort-esque-func : [X] -> [X]
(define (qsort-esque-func L)
 (cond
 [(empty? L) …]
 [else … (qsort-esque-func …) …]))

IMPLEMENTATION OF
PARTY HAT QUICKSORT

;; qsort : [num] -> [num]
(define (qsort L)
 (local
 ((define (elements-before i L) (filter (lambda (x) (<= x i)) L))
 (define (elements-after i L) (filter (lambda (x) (> x i)) L)))
 (cond
 [(empty? L) empty]
 [else
 (append
 (qsort (elements-before (first L) (rest L)))
 (list (first L))
 (qsort (elements-after (first L) (rest L))))])))

SOME FINAL THOUGHTS

 Is “generative recursion” really
something fundamentally new?

 Algorithms are inventions, by people
 They haven’t all been found yet!

= FIN =

