
A NEW FORM OF

RECURSION

COMP 210 — 28 OCT 2005

SCHEME: THE STORY SO FAR

 Values
 simple (numbers, symbols, empty)
 compound (structures, lists)
 functions (lambda)

 Language
 Ways to work with values
 define, cond, local
 primitive functions

WHAT CAN WE DO?

 Simple math of the f(x) = x2 variety

(define (f x) (* x x))

 Structural recursion

;; A list is empty or (cons X list)

(define (f a-list) ;; f : [X] ?
 (cond
 [(empty? a-list) …]
 [else … (first a-list) … (f … (rest a-list) …)]))

SO CAN WE DO ANYTHING?

 Yes, we can compute anything!

 (As long as it’s simple math.)

 (Or walking down a list.)

 (Or a family tree.)

 (Or counting natural numbers down to ‘Zero.)

 Is there nothing else?

GENIUS
WHAT ABOUT

INSPIRATION
CLEVERNESS

(ETC.)

EXPAND YOUR MIND

 And consider new types of
computation

…which do not fit “simple math” or
“structural recursion”.

PROBLEM #1: PHYSICS

 Can we figure out where an airborne object
will hit the ground?

 High school phyiscs: modeling motion
xn+1 = xn + ∆x

(read ∆x as “velocity”)

 But if we have acceleration, we need to
model how it changes velocity:

∆xn+1 = ∆xn + ∆(∆x)
(read ∆(∆x) as “acceleration”)

DEMO #1: LOOSE CANNONS

(ka-boom!)

THE SIMULATION
(define-struct obj (x y vx vy))
; sim : obj -> true
; repeatedly apply velocity to position, accel to velocity
; simulation stops when o hits the “ground” (y=0)
; assume fixed gravity in the y direction of -10 m/s
(define (sim o)
 (cond
 [(< (obj-y o) 0) true] ; stop when we hit the ground
 [else (and
 (draw o)
 (sim (make-obj
 (+ (obj-x o) (obj-vx o)) ; xn+1 = xn + ∆x
 (+ (obj-y o) (obj-vy o)) ; yn+1 = yn + ∆y
 (obj-vx o)
 (+ (obj-vy o) -10))))])) ; ∆yn+1 = ∆yn + ∆(∆y)

WHERE WAS THE TEMPLATE?

 We didn’t know how to write one
 There’s no data definition for “physics

simulation”
 …so it can’t be structural recursion

 But it IS recursive.
 Evidence: sim called sim again.
 So what do we call it?

 The book calls it
“GENERATIVE RECURSION”

TEMPLATE FOR THE
CANNON SIMULATION

 Instead of a cond based on structure:
 A cond based on an idea for simulating things

hitting the “ground”
1. Keep moving an object
2. If the object’s y-value goes below 0, stop

 We can write a template for all simulations
following this idea

(define (f o)
 (cond
 [(< (obj-y o) 0) …]
 [else … (f …) …]))

ALGORITHMS
THE STUDY OF

CLEVER IDEAS FOR SOLVING PROBLEMS

A FUNDAMENTAL TOPIC IN COMPUTER SCIENCE

SYSTEMS, NETWORKS, LANGUAGES, CRYPTO, ROBOTICS, &C.

(OUTSIDE OF COMPUTER SCIENCE, TOO!)

DIVIDE AND CONQUER

 A general class of algorithms

 If your problem is easy to solve, solve it and stop
 Otherwise, break it into strictly easier problems

 And recursively examine those problems
 If those problems are easy to solve …

 (I think you get the idea)

 Conveniently expressed as recursive functions

 Here’s a D&C algorithm for …

PROBLEM #2: SORTING

 THE PARTY HAT ALGORITHM

 For a line of people to be sorted by birthday,

 Pick someone to put on a party hat and shout out her birthday.

 Everyone whose birthday comes before hers: move to her right.

 Everyone whose birthday comes after: move to her left.

 Start the game over with the people on her left.

 Also start over with the people on her right.

 At any point, if the line of people is empty, for goodness’ sake, stop!

DEMO #2: THE PARTY HAT
ALGORITHM AT WORK

(hopefully Dan remembered the party hats)

THAT’S A NEAT ALGORITHM

 This is actually an “old” algorithm (1960)

(oh, and, it’s not called “the party hat algorithm”)

 It’s called QUICKSORT*
 … because it’s quick! It’s a lot better than

insertion sort, which we saw earlier.

* Invented by Sir C. A. R. Hoare, published in
Communications of the ACM, July 1961

TEMPLATE FOR
PARTY HAT QUICKSORT

 Our algorithm said that we’d stop on an
empty list, and perform a generative
recursion otherwise

;; qsort-esque-func : [X] -> [X]
(define (qsort-esque-func L)
 (cond
 [(empty? L) …]
 [else … (qsort-esque-func …) …]))

IMPLEMENTATION OF
PARTY HAT QUICKSORT

;; qsort : [num] -> [num]
(define (qsort L)
 (local
 ((define (elements-before i L) (filter (lambda (x) (<= x i)) L))
 (define (elements-after i L) (filter (lambda (x) (> x i)) L)))
 (cond
 [(empty? L) empty]
 [else
 (append
 (qsort (elements-before (first L) (rest L)))
 (list (first L))
 (qsort (elements-after (first L) (rest L))))])))

SOME FINAL THOUGHTS

 Is “generative recursion” really
something fundamentally new?

 Algorithms are inventions, by people
 They haven’t all been found yet!

= FIN =

