A NEW FORM OF
RECURSION

COMP 210 — 28 OCT 2005

SCHEME: THE STORY SO FAR

Values
simple (numbers, symbols, empty)
compound (structures, lists)
functions (lambda)

Language
Ways to work with values
define, cond, local

primitive functions

WHAT CAN WE DO¢?

Simple math of the f(x) = x2 variety

(define (f x) (* x x))

Structural recursion

v
(define (f a-list)
(cond
[(empty? a-list) ...]
[else ... (first a-list) ... (F ... (rest a-list) ...)]))

SO CAN WE DO ANYTHING?

Yes, we can compute anything]!

(As long as it’s simple math.)

(Or walking down a list.)
(Or a family tree.)

(Or counting natural numbers down to ‘Zero.)

s there nothing else?

WHAT ABOUT

GENIUS

INSPIRATION

CLEVERNESS
(ETC.)

EXPAND YOUR MIND

And consider new types of
computation

...which do not fit “simple math” or
“structural recursion”.

PROBLEM #1: PHYSICS

Can we figure out where an airborne object
will hit the ground?

High school phyiscs: modeling motion

X1 = X, + Ax

(read Ax as “velocity”)

But if we have acceleration, we need to
model how it changes velocity:
Ax ., = Ax_+ A(Ax)

(read A(Ax) as “acceleration”)

DEMO #1: LOOSE CANNONS

(ka-boom!)

THE SIMULATION

(define-struct obj (x y vx vy))
; sim : obj -> true
; repeatedly apply velocity to position, accel to velocity
; simulation stops when o hits the “ground” (y=0)
; assume fixed gravity in the y direction of -10 m/s
(define (sim o)
(cond
[(< (objy o) 0) true] ; stop when we hit the ground
[else (and
(draw o)
(sim (make-obj
(+ (objx o) (objvx 0)) ; x.., = x, + Ax
(+ (obj-y o) (objvy o)) y..; =y, + Ay
(obj-vx o)
(+ (objvy o) -10)))))) Ay, = Ay, + AlAy)

WHERE WAS THE TEMPLATE?

We didn’t know how to write one

There’s no data definition for “physics
simulation”

...so it can’t be structural recursion

But it IS recursive.
Evidence: called sim again.
So what do we call it2

The book calls it
“GENERATIVE RECURSION”

TEMPLATE FOR THE
CANNON SIMULATION

Instead of a based on structure:

A cond based on an idea for simulating things
hitting the “ground”

Keep moving an object
If the object’s y-value goes below 0, stop

We can write a template for all simulations
following this idea

(define (f o)
(cond
[(< (objy o) 0) ...]
[else ... (F...) ...]))

THE STUDY OF

ALGORITHMS

CLEVER IDEAS FOR SOLVING PROBLEMS

A FUNDAMENTAL TOPIC IN COMPUTER SCIENCE

SYSTEMS, NETWORKS, LANGUAGES, CRYPTO, ROBOTICS, &C.

(OUTSIDE OF COMPUTER SCIENCE, TOO!)

DIVIDE AND CONQUER

A general class of algorithms

If your problem is easy to solve, solve it and stop

Otherwise, break it into strictly easier problems

And recursively examine those problems

If those problems are easy to solve ...
(I think you get the idea)

Conveniently expressed as recursive functions

Here’'s a D&C algorithm for ...

PROBLEM #2: SORTING

THE PARTY HAT ALGORITHM

For a line of people to be sorted by birthday,
to put on a party hat and shout out her birthday.
Everyone whose birthday comes hers:
Everyone whose birthday comes
with the people on her left.
with the people on her right.

At any point, if the line of people is empty, for goodness’ sake,

DEMO #2: THE PARTY HAT
ALGORITHM AT WORK

(hopefully Dan remembered the party hats)

THAT'S A NEAT ALGORITHM
This is actually an “old” algorithm (1960)

(oh, and, it's not called “the party hat algorithm”)

It's called QUICKSORT

.. because it's quick! It's a lot better than
insertion sort, which we saw earlier.

ALGORTITHM 64

QUICKSORT

C. A. R. Hoars

Llliott Brothers Ltd., Borehamwood, Hertfordshive, Eng,

procedure 1 icksort (A T\I N) alue M,N;
¥ A; cge l\I N;
romment Q k ery fasi d 11C tl d of
sorl.inu,' an array in Lhe 7‘1\[11.1011 N-access store 0[mpu l The
t i of the store may be ed, sinr:e no extra sp:u'-(-. 15

TEMPLATE FOR
PARFHAT QUICKSORT

Our algorithm said that we’d stop on an
empty list, and perform a generative
recursion otherwise

(define (L)
(cond
[(empty2 L) ...]
[else ... ())

IMPLEMENTATION OF

PARFYHAT QUICKSORT
(define (L)
(locdl
((define (i L) (filter (lambda (x) (<= x i)) L))
(define (i L) (filter (lambda (x) (> x i)) L)))
(cond
[(empty? L) empty]
[else
(append
(((first L) (rest L)))

(list (first L))
(((first L) (rest L))))])))

SOME FINAL THOUGHTS

Is “generative recursion” really
something fundamentally new?

Algorithms are inventions, by people
They haven’t all been found yet!

