
Finding the Evidence in Tamper-Evident Logs

Daniel Sandler Kyle Derr
Rice University Rice University

dsandler@cs.rice.edu derrley@cs.rice.edu

Scott Crosby Dan S. Wallach
Rice University Rice University

scrosby@cs.rice.edu dwallach@cs.rice.edu

Abstract
Secure logs are powerful tools for building systems that must resist forgery, prove temporal rela-
tionships, and stand up to forensic scrutiny. The proofs of order and integrity encoded in these
tamper-evident chronological records, typically built using hash chaining, may be used by appli-
cations to enforce operating constraints or sound alarms at suspicious activity. However, existing
research stops short of discussing how one might go about automatically determining whether a
given secure log satisfies a given set of constraints on its records.

In this paper, we discuss our work on Q, a tool that accomplishes this. It can be
used offline as an analyzer for static logs, or online during the runtime of a logging application.
Q rules are written in a flexible pattern-matching language that adapts to arbitrary log
structures; given a set of rules and available log data, Q presents evidence of correctness
and offers counterexamples if desired. We describe Q’s implementation and offer early
performance results.

1. Introduction

Modern communication, computation, and commerce are notorious for generating a tremendous
amount of logging data. Every transaction or conversation, public and private, leaves a permanent
record, and such records are beginning to find use in forensic investigations and legal proceedings.

The evidence one seeks in these sorts of investigations often takes the form of statements of
existence and order. Put another way, we wish to discover, “What did Alice know, and when
did she know it?” Critically, we must be able to prove the veracity of our findings in the face of
accidental erasure and deliberate manipulation of the “permanent” record.

Recent research offers a powerful tool in the form of secure logs: data structures that use hash
chains to establish a provable order between entries [6]. The principal benefit of this technique
is tamper-evidence: any commitment to a given state of the log is implicitly a commitment to
all prior states. Any attempt to subsequently add, remove, or alter log entries will invalidate the
hash chain. A log whose entries are linked together in this way represents a secure timeline:
a tamper-evident total order on events. We may additionally entangle the timelines of different
service domains [2] by periodically cross-pollinating entries among their logs, further restricting
a party’s ability to unilaterally alter the past without leaving evidence.

A secure log is therefore an excellent ingredient for any system which must yield evidence
about the order of past events. A messaging application, for example, should be able to tell us
what Alice knew and when by performing some sort of query on Alice’s secure log. Such a
system may even wish to use the log to enforce operational constraints; if Alice is only allowed
to communicate with a fixed set of people, her log will contain proof of any misbehavior.

The question, however, of how exactly to find evidence in secure logs remains unanswered.
We can hardly expect human auditors to pore over raw log data, but neither does there exist
a ready solution for automatically probing logs for correctness or inconsistency. This problem
is exacerbated by the diversity of potential secure logging applications, whose log queries and
constraints are likely to vary widely. The goal of a general-purpose facility for domain-specific
log verification, therefore, has been thus far avoided by secure logging research.

In this paper we share our work on Q: to our knowledge, the first general-purpose
tool for analyzing secure logs. It allows auditors or application software developers to articulate
properties of interest using a flexible pattern-matching predicate language that can generalize to
any log or record format. Given a set of predicate rules and a finite log, Q will determine
whether the log conforms to the rules and optionally emit a list of counterexamples. Q
can also be used “online,” embedded in a live application: it will perform queries and verification
while operating incrementally on a growing log. In this case, Q will return what results it
can, and its computation may be resumed as more data becomes available, improving performance
greatly compared to re-starting the computation from scratch..

2. Querifier

According to Schneier and Kelsey:

Audit logs are useless unless someone reads them. Hence, we first assume that there
is a software program whose job it is to scan all audit logs and look for suspicious
entries. [6]

It is unclear how to automatically identify a “suspicious entry.” It is easy to envision a pro-
gram that merely validates all the hash pointers and signatures in a log, but this only tells us if
someone has tampered with the record. How do we go about discovering violations of high-level
constraints, such as “Alice may only talk to certain people?” Rather than developing custom
log-analysis software for every situation, we attempt here to solve the problem more generally,
allowing an application to specify its constraints of interest (viz., what is “suspicious”) to a verifi-
cation tool.

2.1. Goals

We seek, then, a general-purpose tool with a number of essential properties: applications and
auditors must be able to specify arbitrary properties and rules of interest; it must be able to verify
these rules in logs of many shapes; it must be practical to embed within a Java program; it must
be able to operate incrementally on a growing log.

These objectives are motivated by our ongoing research into electronic voting [5], in which
we use secure logs to capture a tamper-evident record of election-day events. If a suspicious or
invalid event occurs on election day, we want to know immediately so that appropriate action can
be taken (for example, removing the offending voting machine from service).

Construct Form Result
Equality T1 = T2 True when both tuples are recursively

identical.

Pattern matching T1.P Like equality, but tuple P may contain wild-
cards that match any element of T1 in the
same position.

Ordering T1 ≺≺ T2 True when T1 precedes T2; that is, if a hash
chain path exists from T2 back to T1.

Negation ¬ Φ Boolean negation of predicate Φ.

Conjunction Φ ∧ Ψ True when both Φ and Ψ are true.

Disjunction Φ ∨ Ψ True when either Φ or Ψ is true.

Material conditional Φ→ Ψ Equivalent to Ψ ∧ ¬Φ.
Universal quantification (∀α ∈ S) Φ True when Φ is true for every α in the set S .

Existential quantification (∃α ∈ S) Φ True when Φ is true for any α in the set S .

Figure 1. Expressivity of QUERIFIER rules. The logic includes truth-functional connection,
quantification, and relations between log records (here termed tuples).

(∃x ∈ L) (exists x all-set
(∃y ∈ L) (exists y all-set

(and
((x.__ ! ε) (match POLLS_OPEN_MSG x)
∧ (y.__ ! ε) (match POLLS_CLOSED_MSG y)
∧ (x ≺≺ y)) (precedes x y all-dag))))

Figure 2. Example S-expression representation of logical rules. The simple rule here asserts
that there exist both a polls-open and polls-closed message in the log, and that the former
precedes the latter. The special value all-set is the set of the available log messages (cor-
responding to the finite set L in the logic), and all-dag is a DAG of time constructed from
all-set by an application plugin.

2.2. Rule language

Q treats a log as an unordered set of tuples. Each element of a tuple is either a string or
another tuple; this recursive data structure is analogous to the well-known LISP S-expression, and
is sufficiently general to represent any log record.

A Q rule expression is a first-order logical predicate over the entire log. The rule lan-
guage allows basic logic connectives as well as quantification over sets (such as the log); it also
includes pattern-matching and name-binding constructs to allow records of interest to be selected
and compared. Finally, it allows for application domains to “plug in” additional language fea-
tures, such as the “happened-before” relation that is essential to dealing with secure log timelines.
Table 1 summarizes the rule language; a more thorough description of the language can be found
in a technical report [4]. Our Q prototype uses a concrete syntax based on Rivest’s S-
expression specification [3] to express these logical rules (see Figure 2).

2.3. Algorithms

We briefly describe some of the unusual algorithmic approaches currently used in our Q
prototype.

parser evaluatorrules

QUERIFIER

plugins

AST

reductions

S-exp

value

Java
code

KEY

assertions

evaluator
state

log
entry

entry

entry

results

Figure 3. QUERIFIER components and operation. Applications supply rules in the form of
S-expressions; the verifier parses rule expressions into an AST suitable for evaluation. Log
entries, also S-exps, are fed to the verifier, which recursively interprets the AST for each, finally
yielding a result value and a list of assertions (if any). Partial results contain sufficient state to
resume the evaluator without performing redundant computation when new log data arrives.

Incremental evaluation using reductions. In the case of a system (such as our voting booth
example) where a secure log needs to be examined in near real time for violations, we will re-
invoke Q on the rules and the log each time a new log record appears. But we want to
avoid re-starting the entire computation from scratch; much of this computation is redundant. (For
example, once we have satisfied our constraint that there exist a “polls open” message, we need
not check it again.)

Q addresses this by using a kind of partial computation technique when evaluating
rules: any particular evaluation which involves quantification over a growing log may result in
a reduction rather than in a result. This reduction, while its truth value is unknown, is a simpli-
fication of the original problem. That is, when the reduction is fed back into the evaluator, no
computation will be repeated in the search for truth.

Once the log is closed for good, Q runs one more time, reducing the entire computa-
tion to a final result. The structure of the Q evaluation engine, taking into account this
reduction technique, is shown in Figure 3.

Graph search with timeline pruning. Determining the order between secure log entries can
naturally be cast as a graph search problem, because hash-chained log entries form a graph of
time: a directed acyclic graph whose vertices are entries, and whose directed edges represent
direct precedence. If a hash chain path exists in a log leading from entry B to entry A, then the
event described by entry A must have happened before event B, written A ≺≺ B. (A corollary of
the “happened before” relationship is potential causality: A may have affected B [1].) If instead a
path exists from A to B, then B precedes A in time.

Note that in a log captured on a single host, this graph ought to degenerate to a line (Figure 4a).
When multiple hosts entangle their logs, however, nearly-simultaneous events from different ori-
gins may result in log entries that succeed the same prior entry. The set of hash-chained log entries
form a DAG in this case (Figure 4b.)

A conventional breadth-first graph search costs O(e) time for an arbitrary directed graph with
e edges; for a log with many entries and many repeated order queries this can highly problematic.
Fortunately, we can exploit the special structure of secure logs to make this quite a bit faster. We
observe that in a single log, we can precompute a total order on all records in the log, making the

A

B

C

A1

B1

C1

FLOW OF TIME

A2

(b)

A

B

C

A1

B1

C1

A2

FLOW OF TIME

(a)

Figure 4. The graph of time. Participants A, B, and C entangle their logs to form an overall
timeline. Arrows denote direct ordering due to a hash chain link; for example, in (a), event A1
directly precedes B1, and so forth. Graph search proves that, for example, B1 ≺≺ A2, despite
the lack of a direct link. In (b), the timeline becomes a more general graph; events B1 and C1
happened roughly simultaneously, and as a result, they share A1 as a direct predecessor. We
do not know which happened first, but we know that they both happened after A1 and before
A2 (which includes hash links to both B1 and C1).

precedes relation return in constant time. For a timeline-entangled system with a few timelines,
we must still use a BFS, but once our search finds the timeline of the destination node, we may now
prune the rest of the BFS search tree and use the local ordering instead. A complete discussion of
this algorithm can be found in a technical report [4].

3. Evaluation

3.1. Experimental setup

Voting simulation. We evaluated our prototype of Q using a synthetic log from an elec-
tronic voting system [5]. The log, comprising 763 individual events from 9 nodes (eight voting
booths and one supervisor console), was collected during an 8-hour real-time simulation of an
election held in a single polling place. The simulation was generated using a modified version
of the Java source code to our VoteBox electronic voting system, replacing the supervisor and
voter GUIs with automated drivers that behave as follows. After opening the polls, the supervisor
authorized a new ballot (simulating a new voter being assigned to a voting machine) every 10 to
120 seconds when voting machines were available. Each “booth” node simulated a voter who
completed his/her ballot anywhere from 30 to 300 seconds later. After eight hours, the polls were
closed; a total of 127 ballots were cast in that time.

Voting rules. Our experimental rule set contains seven constraints, expressed in English as fol-
lows:

1. All messages are correctly formatted.
2. There exists a polls-open record beginning the election.
3. There exists a polls-closed record concluding the election.
4. The polls-open precedes the polls-closed.
5. Every cast-ballot is preceded by an authorized-to-cast, and their authorization nonces match.
6. Every cast-ballot precedes a ballot-received, and their authorization nonces match.
7. Every cast-ballot has a unique authorization nonce.

 0

 2000

 4000

 6000

 8000

 15000

 30000

1 2 4 8 16 32 64 128 all

To
ta

l C
PU

 ti
m

e
(s

ec
)

Number of messages between evaluations

BFS, full evaluation
BFS, incremental evaluation

Figure 5. Incremental evaluation. Bars in-
dicate total time to consume and evaluate
the entire log. The rightmost bar repre-
sents an interval equal to the length of the
input, in which case the two approaches
are equivalent; as the intervals get shorter,
the costs of re-verifying from scratch be-
come obvious.

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32 64 128 all

To
ta

l C
PU

 ti
m

e
(s

ec
)

Number of messages between evaluations

BFS, incremental
Memoized BFS, incremental

BFS+pruning, incremental

Figure 6. Graph search. Incremental verifi-
cation performance across several graph
search algorithms (described in in Sec-
tion 2.3). As in Figure 5, we re-run the
verifier at various intervals to quantify the
overhead associated with each invocation.
Bars indicate total time to verify the entire
log.

As an example of how these assertions may be realized as Q logical rules, we represent
rules 5, 6, and 7 together with the following expression:

(∀b ∈ L) (b._ ! ε) → (
(∃a ∈ L) (a._ ! ε ∧ a._ = b._ ∧ a ≺≺ b)

∧ (∃r ∈ L) (r._ ! ε ∧ r._ = b._ ∧ b ≺≺ r)
∧ ¬(∃x ∈ L) (x._ ! ε ∧ x._ = b._ ∧ x ! b))

A straightforward translation from the above to S-expression syntax (as described in Section 2.2)
yields rules that Q can directly evaluate.

3.2. Results

Incremental evaluation. When given the entire 763-entry log at once, our basic Q im-
plementation completed rule verification in about 220 CPU seconds (0.3s per log entry). When
fed the log incrementally, however, as shown in Figure 5, using reductions in the evaluator omits
a tremendous amount of redundant work incurred when reevaluating the entire log from scratch
with every batch.

Graph search. We also compared three algorithms for computing order between entries in the
graph of time: BFS, memoized BFS (like BFS but with pairwise cached results), and BFS with
timeline pruning (see Section 2.3). We examined the performance of these algorithms in the in-
cremental verifier, using the same batch-size variation described previously; the results are shown
in Figure 6. As expected, the pruning algorithm improves substantially over naïve graph search.

4. Conclusion

Contributions. The burgeoning study of secure logs has much to say about what evidence those
logs may potentially yield, but little about how to find that evidence. The work we have described
explores using predicate logic, combined with order and pattern-matching relations, to express
properties over secure logs of arbitrary shape and complexity. We have also described Q,
a prototype implementation of a rule verifier that applies this technique to logs and rules using
several novel algorithms.

We have found Q to be a useful ingredient in our secure logging applications under
development. It allows us to focus on expressing the rules that define correct behavior without
reinventing the mechanism for evaluating those rules in each unique situation. The rules ulti-
mately represent concise specifications of application semantics, and have even revealed evidence
of bugs in our software. Q is a first step in bridging the gap between “there exists a proof
of misbehavior” and actually finding that evidence.

Future work. We look forward to improving the performance and scalability of Q. Op-
timizations and other techniques from databases may be applicable to the problem, and we hope to
identify these situations in an optimized version of the evaluator. Where possible and appropriate,
we may also be able to reduce the size of the log under examination by summarizing or pruning
obsolescent and unnecessary data. We are also actively exploring techniques for distributing the
verification task among a number of computation nodes. Our objective is to make Q prac-
tical for vastly larger data sets collected over very long periods, such as logs from internet-scale
applications like instant messaging and email.

References
[1] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–565,

1978.

[2] Petros Maniatis and Mary Baker. Secure history preservation through timeline entanglement. In Proceedings of
the 11th USENIX Security Symposium, San Francisco, CA, August 2002.

[3] Ronald L. Rivest. S-expressions. IETF Internet Draft, May 1997. http://people.csail.mit.edu/rivest/sexp.txt.

[4] Daniel Sandler, Kyle Derr, Scott Crosby, and Dan S. Wallach. Finding the evidence in tamper-evident logs.
Technical Report TR08-01, Department of Computer Science, Rice University, Houston, TX, January 2008.
http://cohesion.rice.edu/engineering/computerscience/TR/TR_Download.cfm%?SDID=238.

[5] Daniel Sandler and Dan S. Wallach. Casting votes in the Auditorium. In Proceedings of the 2nd
USENIX/ACCURATE Electronic Voting Technology Workshop (EVT’07), Boston, MA, August 2007.

[6] Bruce Schneier and John Kelsey. Secure audit logs to support computer forensics. ACM Transactions on
Information and System Security, 1(3), 1999.

