
ALGORITHMS THAT

BACKTRACK

COMP 210 — 04 NOV 2005

(P)REVIEW

 All the way back to Lecture 14 (9/28)

 Descendant family trees

blue-eyed-descendant?

 Data definition:

(define-struct parent (children name date eyes))

;; A parent is (always!) a structure:
;; (make-parent loc n d e)
;; where loc is a list of children, n and e
;; are symbols, and d is a number.

;; A list-of-children is either
;; 1. empty or
;; 2. (cons p loc) where p is a parent and loc is
;; a list of children.

blue-eyed-descendant?
;; blue-eyed-descendant? : parent -> boolean
;; to determine whether a-parent any of the descendants (children,
;; grandchildren, and so on) have 'blue in the eyes field
(define (blue-eyed-descendant? a-parent)
 (cond

[(symbol=? (parent-eyes a-parent) 'blue) true]
[else (blue-eyed-children? (parent-children a-parent))]))

;; blue-eyed-children? : list-of-children -> boolean
;; to determine whether any of the structures in aloc is blue-eyed
;; or has any blue-eyed descendant
(define (blue-eyed-children? aloc)
 (cond

[(empty? aloc) false]
[(blue-eyed-descendant? (first aloc)) true]
[else (blue-eyed-children? (rest aloc))]))

BACKTRACKING

 The book devotes a whole section to this

 A common technique when searching trees
1. Go down one branch
2. if you don’t find the answer, go down the next

branch

 This applies to a more general class of
tree-like structures, called

GRAPHS
[YOU’LL SEE THESE AGAIN AND AGAIN]

DIRECTED GRAPHS, FORMALLY

 A directed graph G = { V, E }
 V: a set of vertices
 E: a set of edges

 An edge is a pair of vertices { V1, V2 }
 The edge connects V1 to V2

 We interpret these sets as a picture in which
vertices are connected to one another by
edges

TREES?

 Trees are graphs, too
 With the added restriction that each

vertex may have exactly one edge
leading to it

 We call the number of inbound edges “in-
degree”, so trees are directed graphs of
in-degree 1

EXAMPLES OF
DIRECTED GRAPHS

- The Web: a page has potentially many links to
another page

- The Internet: computers connected to other
computers (it seems like it might be undirected, but
consider a firewall: things can go out, but not back
in)

- Downtown Houston: one-way streets, and some
streets don’t connect

- Facebook, MySpace, Friendster, Orkut, etc.
(linking people to each other, in a DIRECTED
fashion)

REPRESENTING GRAPHS

 We choose Scheme lists
 A node (“vertex”) is a symbol, like 'A
 A graph is
 a list of
 (list node (listof nodes))

 We call this an “associative list”

 The (listof nodes) represents the nodes
reachable from that node

EXAMPLE

(define Graph
(list

(list ‘A (list ‘B ‘C))
(list ‘B (list ‘C))
(list ‘C empty)
(list ‘D empty)))

A

B

C

D

PROBLEM: ROUTE SEARCH

 We want to find a route from one
node to another.
 (Maybe this is a maze in which you have

a starting point, a number of one-way
paths, and a goal.)

EXAMPLE

C DB

A FE

H IG

- LIFE -
♥♥♥♥♥λ

YOU

TREASURE

THIS TIME, IN SCHEME

(define Graph
‘[(A (C F))
 (B (E))
 (C (D B))
 (D (F))
 (E ())
 (F (I))
 (G ())
 (H (G))
 (I (H))])

C DB

A FE

H IG

OUR GOAL: find-route

;; find-route : node node graph -> [node]
;; find a path from a to b in graph g
(define (find-route a b g) ...)

;; examples
(find-route ‘A ‘A Graph)

=> (list ‘A)
(find-route ‘A ‘B Graph)

=> (list ‘A ‘C ‘B)

C DB

A FE

H IG

PATHS MIGHT NOT EXIST

(find-route ‘D ‘A G)
 => ?

 We need to
expand our
function’s return
type slightly to
encode this

C DB

A FE

H IG

UPDATED: find-route

;; find-route : node node graph -> [node] or false
;; find a path from a to b in graph g
;; if no path exists, returns false
(define (find-route a b g) ...)

SOLVING A RECURSIVE
PROBLEM

1. What’s the trivial problem (the one
we know how to solve right away)?

2. What’s the trivial problem’s solution?
3. How do we break a non-trivial

problem up into smaller problems?
4. How do we combine the results?

ANSWERS TO THESE
QUESTIONS AND MORE

1. The trivial problem:
if (symbol=? a b), we’re done.

2. The path in this case is
(list b).

3. Otherwise,
inspect each neighbor of a and see if there exists

a path to b from it.

4. If we do find a path from a neighbor,
prepend our current node (cons a path) and return.

FIRST ATTEMPT: find-route

;; find-route : node node graph -> [node] or false

(define (find-route a b g)
(cond

[(symbol=? a b) (list b)]
[else … now what?

find-route (2)
;; find-route : node node graph -> [node] or false
(define (find-route a b g)

(cond
[(symbol=? a b) (list b)]
[else (local

 [(define possible-route
 (find-route/list (neighbors a g) b g))]

 (cond
 [(cons? possible-route)

(cons a possible-route)]
 [else false]))]))

TODO:
write find-route/list

and neighbors

TODO: find-route/list

 We said that, given a list of nodes, it should
find a path (if it exists) from any of them
 This is just like (blue-eyed-children?), remember?
 We had (blue-eyed-descendant?) for one ftn, but

needed a helper to look through a list of children

;; blue-eyed-descendant? : parent -> boolean
(define (blue-eyed-descendant? a-parent) …)
;; blue-eyed-children? : list-of-children -> boolean
(define (blue-eyed-children? aloc) …)

find-route/list (2)

;; find-route/list : [node] node graph -> [node] or false
;; finds the route in g, if it exists, from some node in l
;; to b; if no path exists, returns false
(define (find-route/list l b g)
 (cond
 [(empty? l) false]
 [else … (find-route (first l) b g) …
 … (find-route/list (rest l) b g) …]))

find-route/list (3)

;; find-route/list : [node] node graph -> [node] or false
(define (find-route/list l b g)
 (cond
 [(empty? l) false]
 [else (local
 [(define possible-route

(find-route (first l) b g))]
 (cond
 [(cons? possible-route) possible-route]
 [else (find-route/list (rest l) b g)]))]))

ONE LAST TODO

;; neighbors: node graph -> [node]
;; finds the nodes in g reached by edges from n
(define (neighbors n g)

(cond
[(empty? g) (error ‘neighbors “Not in graph!”)]
[else (cond

[(symbol=? n (first (first g)))
(second (first g))]

[else (neighbors n (rest g)])]))

TIME EXTENDED!

 Seriously, we have time left over?
(cond

[(find-routes-in-cyclic-graphs?) (go)]
[(learn-about-associative-lists?) (go)])

ASSOCIATIVE LISTS

 These things are fun
 Use them to organize data by “name”
 Type: [(list X ?)]
 Example:

(define too-many-dans (list
(list ‘dsandler “Dan Sandler”)
(list ‘dlsmith “Dan Smith”)
(list ‘danvk “Dan Vanderkam”)))

FUNCTIONS FOR
ASSOCIATIVE LISTS

 You could write your own, like (neighbors),
but Scheme gives us the most abstract one:
;; assf : (X -> boolean) [(list X …)] -> ?
;; (an unfortunate name)
;; if there exists a (list x …) in the associative list
;; al return the second of the list; otherwise false
(define (assf func al)

(cond
[(empty? al) false]
[else (cond

[(func (first (first al))) (second (first al))]
[else (assf func (rest al))])]))

EXEMPLI GRATIA

(assf (lambda (x) (symbol=? x ‘dsandler))
too-many-dans)

⇒ “Dan Sandler”

(assf (lambda (x) (symbol=? x ‘dwallach))
too-many-dans)

⇒ false

 There are others, too
 …shorthands for “look in the assoc. for something ‘equal’

to x”
 To define these requires knowledge of Scheme’s weird

equivalence functions
 (Of these, you’ve probably already seen equal? … it gets

weirder from there)

BACK TO GRAPHS

 How would we write (neigbors) with
assf?

; neighbors : node graph -> [node]
(define (neighbors n g)

(assf (lambda (x) (symbol=? x n)) g))

 (Easy!)

ONE LAST NOTE

 Prof. Taha points out: “If you know the
entire graph ahead of time, why not just
write that into the function?”

(define (graph1-neighbors n)
(cond [(symbol=? n ‘A) ‘(B C)]

[(symbol=? n ‘B) ‘(C)]
[(symbol=? n ‘C) ‘()]
[(symbol=? n ‘D) ‘()]
[else (error …)]))

 Each new (?-neighbors) function you
write represents a different graph

 Our graph data definition becomes a
function. Crazy!

A

B

C

D

GRAPHS WITH CYCLES

 We’re time-travelling to next week’s
lectures, now

 If we ran (find-route) on a cyclic
directed graph, what might happen?
 Try it.

 How does this violate the recursive
algorithm design?
 Problem doesn’t necessarily get smaller

at every step!

I DON’T NEED TO WALK
AROUND IN CIRCLES

 If only we had some way to remember
which nodes we’ve already seen…
 Maybe we can pass that information

from function call to function call.
 We call this kind of recursion

“accumulation”—we’re accumulating data
as we dig deeper into the problem, as
well as potentially creating data on our
way back “out”

ACCUMULATION: A CRASH
COURSE

 Old-school:
; sum: [num] -> num
(define (sum l)

(cond
 [(empty? l) 0]
 [else

(+ (first l)
 (sum (rest l)))]))

(sum (list 1 2 3 4)) => 10

 New-school:
; asum: [num] num -> num
(define (asum l a)

(cond
 [(empty? l) a]
 [else

(sum (rest l)
 (+ (first l) a))]))

(asum (list 1 2 3 4) 0) => 10

ACCUMULATING A LIST OF
“SEEN” NODES

(define (route2 a b g seen)
 (cond
 [(symbol=? a b) (list a)]
 [(in-list? a seen) false]
 [else (local
 [(define possible-route

(route2/list (neighbors a g) b g (cons a seen)))]
 (cond
 [(cons? possible-route) (cons a possible-route)]
 [else false]))]))

(define (route2/list l b g seen)
 (cond
 [(empty? l) false]
 [else (local
 [(define possible-route (route2 (first l) b g seen))]
 (cond
 [(cons? possible-route) possible-route]
 [else (route2/list (rest l) b g seen)]))]))

Add this node to
the “seen” list before

digging deeper

Stop if we’ve
already

been here

TESTING OUR NEW
FUNCTION

(define G
 '[(A (B C D))
 (B (C D))
 (C (D))
 (D (E G))
 (E (A))
 (F ())
 (G ())])

> (route 'E 'G G)
…
user break
> (route2 'E 'G G

empty)
(list 'E 'A 'B 'C 'D 'G)

= FIN =

