ALGORITHMS THAT

ADAATRACK

COMP 210 — 04 NOV 2005

(P)REVIEW

All the way back to Lecture 14 (9/28)

Descendant family trees

blue-eyed-descendant?

Data definition:

(define-struct (name date eyes))
;0 A is (always!) a structure:

;; (make-parent loc nd e)

;> where loc is a ,nand e

;; are symbols, and d is a number.

A is either
;; 1. empty or
;7 2. (cons) where p is a and loc is

17 a

blue-eyed-descendant?

;; blue-eyed-descendant? : parent -> boolean
;; to determine whether a-parent any of the descendants (children,
;; grandchildren, and so on) have 'blue in the eyes field
(define (a-parent)
(cond
[(symbol=2 (parent-eyes a-parent) 'blue) true]
[else (blue-eyed-children? (parent-children a-parent))]))

;; blue-eyed-children? : list-of-children -> boolean
;; to determine whether any of the structures in aloc is blue-eyed
;; or has any blue-eyed descendant
(define (blue-eyed-children? aloc)
(cond
[(empty? aloc) false]
[((first aloc)) true]
[else (blue-eyed-children? (rest aloc))]))

BACKTRACKING

The book devotes a whole section to this

A common technique when searching trees
Go down one branch

if you don’t find the answer, go down the next
branch

This applies to a more general class of
tree-like structures, called

GRAPHS

[YOU’LL SEE THESE AGAIN AND AGAIN]

DIRECTED GRAPHS, FORMALLY

A directed graph G={V, E}
V: a set of vertices
E: a set of edges

An edge is a pair of vertices { V;, V, }
The edge connects V, to V,

We interpret these sets as a picture in which
vertices are connected to one another by
edges

TREES?

Trees are graphs, too

With the added restriction that each

vertex may have exactly one edge
leading to it

We call the number of inbound edges “in-

degree”, so trees are directed graphs of
in-degree 1

EXAMPLES OF
DIRECTED GRAPHS

The Web: a page has potentially many links to
another page

The Internet: computers connected to other
computers (it seems like it might be undirected, but
consider a firewall: things can go out, but not back
in)

Downtown Houston: one-way streets, and some
streets don’t connect

Facebook, MySpace, Friendster, Orkut, etc.

(linking people to each other, in a DIRECTED
fashion)

REPRESENTING GRAPHS

We choose Scheme lists
A node (“vertex”) is a symbol, like 'A
A graph is
a list of
(list node (listof nodes))

We call this an “associative list”

The (listof nodes) represents the nodes
reachable from that node

EXAMPLE

(define Graph A
(list
(list ‘A (list ‘B ‘C)) .

(list ‘B (list ‘'C)) T

(list ‘'C empty)
(list ‘D empty)))

PROBLEM: ROUTE SEARCH

We want to find a route from one
node to another.
(Maybe this is a maze in which you have

a starting point, a number of one-way
paths, and a goal.)

EXAMPLE

- LIFE -

THIS TIME, IN SCHEME

(define Graph

I[((:((E(;)F)) El

(C (D B))

(D (F))
(E () El |Z|

(F (1))

(G ())
(H (G)) E' |I|

(1 (H))])

OUR GOAL: find-route

;; find-route : node node graph -> [node]

;; find a path from ato b in graph g
(define (find-route a b g) ...)

;; examples

(find-route ‘A ‘A Graph)
=> (list ‘A)

(find-route ‘A ‘B Graph)
=> (list ‘A ‘'C 'B)

PATHS MIGHT NOT EXIST

(find-route ‘D ‘A G) B C
We need to E
expand our
function’s return o H

type slightly to
encode this

UPDATED: find-route

;; find-route : node node graph -> [node] or false
;; find a path from ato b in graph g

;; if no path exists, returns false

(define (find-route a b g) ...)

SOLVING A RECURSIVE
PROBLEM
What's the (the one

we know how to solve right away)?
What's the trivial problem’s

How do we a non-trivial
problem up into

How do we the results?

ANSWERS TO THESE
QUESTIONS AND MORE

The trivial problem:
if (symbol=2 a b), we're done.

The path in this case is
(list b).
Otherwise,

inspect each neighbor of a and see if there exists
a path to b from it.

If we do find a path from a neighbor,

prepend our current node (cons a path) and return.

FIRST ATTEMPT: find-route

(define (find-route a b g)
(cond
[(symbol=2 a b) (list b)]

[else ... now what?

find-route (2)

TODO:
write find-route/list
and neighbors

(locdl
[(define possible-route
((ag)b gl
(cond

[(cons? possible-route)
(cons a possible-route]]

[else false]))]))

TODO: find-route/list

We said that, given a list of nodes, it should
find a path (if it exists) from any of them

This is just like (blue-eyed-children2), remember?

We had (blue-eyed-descendant?) for one ftn, but
needed a helper to look through a list of children

(define (a-parent) ...)

(define (aloc) ...)

find-route/list (2)

;; find-route/list : [node] node graph -> [node] or false
;; finds the route in g, if it exists, from some node in |
;; to b; if no path exists, returns false

(define (find-route/list | b g)

(cond
[(empty?2 |) false]
[else ... (find-route bg) ...

... (find-route/list bgl..1))

find-route/list (3)

;; find-route/list : [node] node graph -> [node] or false
(define (find-route/list | b g)

(cond
[(empty?) false]
lelse (locdl
[(define possible-route
(find-route b g))]
(cond

[(cons? possible-route) possible-route]

[else (find-route/list SEN

ONE LAST TODO

(define (neighbors n g)
(cond
[(empty?2 g) (error ‘neighbors “Not in graph!”)]

[else (cond
[(symbol=2 n (first (first g)))
(second (first g))]
[else (neighbors n (rest g)])]))

TIME EXTENDED!

Seriously, we have time left over?
(cond
[(find-routes-in-cyclic-graphs?) (go)]

[(learn-about-associative-listsg) (go)])

ASSOCIATIVE LISTS

These things are fun

Use them to organize data by “name”
Type: [(list X 2)]

Example:

(define too-many-dans (list

(list ‘dsandler “Dan Sandler”)
(list ‘dIsmith “Dan Smith”)

(list ‘danvk “Dan Vanderkam”)))

FUNCTIONS FOR
ASSOCIATIVE LISTS

You could write your own, like (neighbors),
but Scheme gives us the most abstract one:
assf

(define (assf func al)
(cond

[(empty? al) false]

[else (cond
[(func (first (first al))) (second (first al))]
[else (assf func (rest al))])]))

EXEMPLI GRATIA

(assf (lambda (x) (symbol=2 x ‘dsandler))
too-many-dans)
“Dan Sandler”

(assf (lambda (x) (symbol=2 x ‘dwallach))
too-many-dans)
false

There are others, too

...shorthands for “look in the assoc. for something ‘equal’
to x”

To define these requires knowledge of Scheme’s weird
equivalence functions

(Of these, you've probably already seen equal? ... it gets
weirder from there)

BACK TO GRAPHS

How would we write (neigbors) with
assfe

(define (neighbors n g)
(assf (lambda (x) (symbol=2 x n)) g))

(Easy!)

ONE LAST NOTE

Prof. Taha points out: “If you know the
entire graph ahead of time, why not just
write that into the function2”

(define (graph1-neighbors n)

(cond (symbol=2 n ‘A) ‘(B C]]
(symbol=2 n ‘B) ‘(C)]
(symbol=2 n ‘'C) ‘()]
(symbol=2 n ‘D) ‘()]
else (error ...)]))

Each new (2-neighbors) function you
write represents a different graph

Our graph data definition becomes a
function. Crazy!

GRAPHS WITH CYCLES

We're time-travelling to next week’s
lectures, now

If we ran (find-route) on a cyclic

directed graph, what might happen?
Try it.

How does this violate the recursive

algorithm design?

Problem doesn’t necessarily get smaller
at every step!

| DON'T NEED TO WALK
AROUND IN CIRCLES

If only we had some way to remember
which nodes we’ve already seen...

Maybe we can pass that information
from function call to function call.

We call this kind of recursion
“accumulation”—we’re accumulating data
as we dig deeper into the problem, as
well as potentially creating data on our
way back “out”

ACCUMULATION: A CRASH
COURSE

Old-school: New-school:
; sum: [num] -> num

; asum: [num] num -> num
(define (sum |)

(define (asum | a)

(cond
[(empty2 I) O] (cond
[else [(empty? 1) a]

[else

)
)

(sum (list 123 4))=>10
(asum (list 1 2 3 4) 0) => 10

ACCUMULATING A LIST OF
“SEEN” NODES

(define (route2 a b g)

(cond Si’Op if we've
[(symbol=2 a b) (list a]] already
been here

[else (local

[(define possible-route

(route2/list (neighbors a g) b g)]
(cond
[(cons? possible-route) (cons a possible-route)]
[else false]))]))

Add this node to

the “seen” list before

(define (route2/list | b g)

(cond diaaing d
[(empty? |) false] 'gging deeper
[else (local

(define possible-route (route2 (first [) b g)]
(cond

(cons? possible-route) possible-route]

else (route2/list (restl) b g 1))

TESTING OUR NEW

FUNCTION
(define G > (route 'E 'G G)
'[(A (B C D))
(B (C D))
(C (D)) > (route2 'E'G G
(D (E G)) empty)

(E (A)) (list 'E'A 'B'C 'D 'G)
(F ())
(G ())])

