
ALGORITHMS THAT

BACKTRACK

COMP 210 — 04 NOV 2005

(P)REVIEW

 All the way back to Lecture 14 (9/28)

 Descendant family trees

blue-eyed-descendant?

 Data definition:

(define-struct parent (children name date eyes))

;; A parent is (always!) a structure:
;; (make-parent loc n d e)
;; where loc is a list of children, n and e
;; are symbols, and d is a number.

;; A list-of-children is either
;; 1. empty or
;; 2. (cons p loc) where p is a parent and loc is
;; a list of children.

blue-eyed-descendant?
;; blue-eyed-descendant? : parent -> boolean
;; to determine whether a-parent any of the descendants (children,
;; grandchildren, and so on) have 'blue in the eyes field
(define (blue-eyed-descendant? a-parent)
 (cond

[(symbol=? (parent-eyes a-parent) 'blue) true]
[else (blue-eyed-children? (parent-children a-parent))]))

;; blue-eyed-children? : list-of-children -> boolean
;; to determine whether any of the structures in aloc is blue-eyed
;; or has any blue-eyed descendant
(define (blue-eyed-children? aloc)
 (cond

[(empty? aloc) false]
[(blue-eyed-descendant? (first aloc)) true]
[else (blue-eyed-children? (rest aloc))]))

BACKTRACKING

 The book devotes a whole section to this

 A common technique when searching trees
1. Go down one branch
2. if you don’t find the answer, go down the next

branch

 This applies to a more general class of
tree-like structures, called

GRAPHS
[YOU’LL SEE THESE AGAIN AND AGAIN]

DIRECTED GRAPHS, FORMALLY

 A directed graph G = { V, E }
 V: a set of vertices
 E: a set of edges

 An edge is a pair of vertices { V1, V2 }
 The edge connects V1 to V2

 We interpret these sets as a picture in which
vertices are connected to one another by
edges

TREES?

 Trees are graphs, too
 With the added restriction that each

vertex may have exactly one edge
leading to it

 We call the number of inbound edges “in-
degree”, so trees are directed graphs of
in-degree 1

EXAMPLES OF
DIRECTED GRAPHS

- The Web: a page has potentially many links to
another page

- The Internet: computers connected to other
computers (it seems like it might be undirected, but
consider a firewall: things can go out, but not back
in)

- Downtown Houston: one-way streets, and some
streets don’t connect

- Facebook, MySpace, Friendster, Orkut, etc.
(linking people to each other, in a DIRECTED
fashion)

REPRESENTING GRAPHS

 We choose Scheme lists
 A node (“vertex”) is a symbol, like 'A
 A graph is
 a list of
 (list node (listof nodes))

 We call this an “associative list”

 The (listof nodes) represents the nodes
reachable from that node

EXAMPLE

(define Graph
(list

(list ‘A (list ‘B ‘C))
(list ‘B (list ‘C))
(list ‘C empty)
(list ‘D empty)))

A

B

C

D

PROBLEM: ROUTE SEARCH

 We want to find a route from one
node to another.
 (Maybe this is a maze in which you have

a starting point, a number of one-way
paths, and a goal.)

EXAMPLE

C DB

A FE

H IG

- LIFE -
♥♥♥♥♥λ

YOU

TREASURE

THIS TIME, IN SCHEME

(define Graph
‘[(A (C F))
 (B (E))
 (C (D B))
 (D (F))
 (E ())
 (F (I))
 (G ())
 (H (G))
 (I (H))])

C DB

A FE

H IG

OUR GOAL: find-route

;; find-route : node node graph -> [node]
;; find a path from a to b in graph g
(define (find-route a b g) ...)

;; examples
(find-route ‘A ‘A Graph)

=> (list ‘A)
(find-route ‘A ‘B Graph)

=> (list ‘A ‘C ‘B)

C DB

A FE

H IG

PATHS MIGHT NOT EXIST

(find-route ‘D ‘A G)
 => ?

 We need to
expand our
function’s return
type slightly to
encode this

C DB

A FE

H IG

UPDATED: find-route

;; find-route : node node graph -> [node] or false
;; find a path from a to b in graph g
;; if no path exists, returns false
(define (find-route a b g) ...)

SOLVING A RECURSIVE
PROBLEM

1. What’s the trivial problem (the one
we know how to solve right away)?

2. What’s the trivial problem’s solution?
3. How do we break a non-trivial

problem up into smaller problems?
4. How do we combine the results?

ANSWERS TO THESE
QUESTIONS AND MORE

1. The trivial problem:
if (symbol=? a b), we’re done.

2. The path in this case is
(list b).

3. Otherwise,
inspect each neighbor of a and see if there exists

a path to b from it.

4. If we do find a path from a neighbor,
prepend our current node (cons a path) and return.

FIRST ATTEMPT: find-route

;; find-route : node node graph -> [node] or false

(define (find-route a b g)
(cond

[(symbol=? a b) (list b)]
[else … now what?

find-route (2)
;; find-route : node node graph -> [node] or false
(define (find-route a b g)

(cond
[(symbol=? a b) (list b)]
[else (local

 [(define possible-route
 (find-route/list (neighbors a g) b g))]

 (cond
 [(cons? possible-route)

(cons a possible-route)]
 [else false]))]))

TODO:
write find-route/list

and neighbors

TODO: find-route/list

 We said that, given a list of nodes, it should
find a path (if it exists) from any of them
 This is just like (blue-eyed-children?), remember?
 We had (blue-eyed-descendant?) for one ftn, but

needed a helper to look through a list of children

;; blue-eyed-descendant? : parent -> boolean
(define (blue-eyed-descendant? a-parent) …)
;; blue-eyed-children? : list-of-children -> boolean
(define (blue-eyed-children? aloc) …)

find-route/list (2)

;; find-route/list : [node] node graph -> [node] or false
;; finds the route in g, if it exists, from some node in l
;; to b; if no path exists, returns false
(define (find-route/list l b g)
 (cond
 [(empty? l) false]
 [else … (find-route (first l) b g) …
 … (find-route/list (rest l) b g) …]))

find-route/list (3)

;; find-route/list : [node] node graph -> [node] or false
(define (find-route/list l b g)
 (cond
 [(empty? l) false]
 [else (local
 [(define possible-route

(find-route (first l) b g))]
 (cond
 [(cons? possible-route) possible-route]
 [else (find-route/list (rest l) b g)]))]))

ONE LAST TODO

;; neighbors: node graph -> [node]
;; finds the nodes in g reached by edges from n
(define (neighbors n g)

(cond
[(empty? g) (error ‘neighbors “Not in graph!”)]
[else (cond

[(symbol=? n (first (first g)))
(second (first g))]

[else (neighbors n (rest g)])]))

TIME EXTENDED!

 Seriously, we have time left over?
(cond

[(find-routes-in-cyclic-graphs?) (go)]
[(learn-about-associative-lists?) (go)])

ASSOCIATIVE LISTS

 These things are fun
 Use them to organize data by “name”
 Type: [(list X ?)]
 Example:

(define too-many-dans (list
(list ‘dsandler “Dan Sandler”)
(list ‘dlsmith “Dan Smith”)
(list ‘danvk “Dan Vanderkam”)))

FUNCTIONS FOR
ASSOCIATIVE LISTS

 You could write your own, like (neighbors),
but Scheme gives us the most abstract one:
;; assf : (X -> boolean) [(list X …)] -> ?
;; (an unfortunate name)
;; if there exists a (list x …) in the associative list
;; al return the second of the list; otherwise false
(define (assf func al)

(cond
[(empty? al) false]
[else (cond

[(func (first (first al))) (second (first al))]
[else (assf func (rest al))])]))

EXEMPLI GRATIA

(assf (lambda (x) (symbol=? x ‘dsandler))
too-many-dans)

⇒ “Dan Sandler”

(assf (lambda (x) (symbol=? x ‘dwallach))
too-many-dans)

⇒ false

 There are others, too
 …shorthands for “look in the assoc. for something ‘equal’

to x”
 To define these requires knowledge of Scheme’s weird

equivalence functions
 (Of these, you’ve probably already seen equal? … it gets

weirder from there)

BACK TO GRAPHS

 How would we write (neigbors) with
assf?

; neighbors : node graph -> [node]
(define (neighbors n g)

(assf (lambda (x) (symbol=? x n)) g))

 (Easy!)

ONE LAST NOTE

 Prof. Taha points out: “If you know the
entire graph ahead of time, why not just
write that into the function?”

(define (graph1-neighbors n)
(cond [(symbol=? n ‘A) ‘(B C)]

[(symbol=? n ‘B) ‘(C)]
[(symbol=? n ‘C) ‘()]
[(symbol=? n ‘D) ‘()]
[else (error …)]))

 Each new (?-neighbors) function you
write represents a different graph

 Our graph data definition becomes a
function. Crazy!

A

B

C

D

GRAPHS WITH CYCLES

 We’re time-travelling to next week’s
lectures, now

 If we ran (find-route) on a cyclic
directed graph, what might happen?
 Try it.

 How does this violate the recursive
algorithm design?
 Problem doesn’t necessarily get smaller

at every step!

I DON’T NEED TO WALK
AROUND IN CIRCLES

 If only we had some way to remember
which nodes we’ve already seen…
 Maybe we can pass that information

from function call to function call.
 We call this kind of recursion

“accumulation”—we’re accumulating data
as we dig deeper into the problem, as
well as potentially creating data on our
way back “out”

ACCUMULATION: A CRASH
COURSE

 Old-school:
; sum: [num] -> num
(define (sum l)

(cond
 [(empty? l) 0]
 [else

(+ (first l)
 (sum (rest l)))]))

(sum (list 1 2 3 4)) => 10

 New-school:
; asum: [num] num -> num
(define (asum l a)

(cond
 [(empty? l) a]
 [else

(sum (rest l)
 (+ (first l) a))]))

(asum (list 1 2 3 4) 0) => 10

ACCUMULATING A LIST OF
“SEEN” NODES

(define (route2 a b g seen)
 (cond
 [(symbol=? a b) (list a)]
 [(in-list? a seen) false]
 [else (local
 [(define possible-route

(route2/list (neighbors a g) b g (cons a seen)))]
 (cond
 [(cons? possible-route) (cons a possible-route)]
 [else false]))]))

(define (route2/list l b g seen)
 (cond
 [(empty? l) false]
 [else (local
 [(define possible-route (route2 (first l) b g seen))]
 (cond
 [(cons? possible-route) possible-route]
 [else (route2/list (rest l) b g seen)]))]))

Add this node to
the “seen” list before

digging deeper

Stop if we’ve
already

been here

TESTING OUR NEW
FUNCTION

(define G
 '[(A (B C D))
 (B (C D))
 (C (D))
 (D (E G))
 (E (A))
 (F ())
 (G ())])

> (route 'E 'G G)
…
user break
> (route2 'E 'G G

empty)
(list 'E 'A 'B 'C 'D 'G)

= FIN =

