
Recursive Data 2

Mutually Recursive Data Definitions
(HTDP sec 15.1)

Previously: Family Trees
 Specifically, ancestor family trees

A family-tree-node is either
 - empty, or
 - (make-child fa mo da na ey)
 where na and ey are symbols
 and da is a number
 and fa and mo are family-tree-nodes

 A self-referential data type of our own
invention

A function on ancestor family
tree nodes
;; blue-eyed-ancestor? : ftn -> boolean

(define (blue-eyed-ancestor? a-ftree)
 (cond

[(empty? a-ftree) false]
[(symbol=? (child-eyes a-ftree) 'blue) true]
[else (or

 (blue-eyed-ancestor? (child-father a-ftree))
 (blue-eyed-ancestor?
 (child-mother a-ftree))))]))

 The colored portions come directly from the
template for ancestor family trees

A new data type: descendant
family trees
 Like ancestor f.t.’s, with one key difference

 each node now knows about its children, instead
of its parents

 Ancestor trees were easy to represent
 You can have at most two parents!

 Descendant trees will be harder
 How do you encapsulate potentially many

children in a structure?

Lists inside structures
 Sure, why not? Let’s write the data definition

for a node:
 (we’ll call it “parent” since each node may have potentially many

children)

; a parent is (make-parent loc n d e)
; where n, e are symbols
; and d is a number
; and loc is a list of children

 Now we have a problem. What’s a “list of
children”?

?

Lists inside structures (take 2)
 Let’s try again, starting with the data definition for a

list of children:

; a list of children is either
; - empty, or
; - (cons p loc)
; where p is a parent
; and loc is a list of children

 We’re still stuck. Now we know what a list of
children is, but “parent” is undefined.

?

Mutually Referential Data
Definitions
 The point is, you need both parts of the

data definition for it to be complete and
legal

; a parent is (make-parent loc n d e)
; where n, e are symbols
; and d is a number
; and loc is a list of children
;
; a list of children is either
; - empty, or
; - (cons p loc)
; where p is a parent
; and loc is a list of children

Examples
(define-struct parent (children name date eyes))

(define Violet
 (make-parent empty 'VioletParr 1990 'brown))
(define Dash
 (make-parent empty 'DashiellParr 1995 'blue))
(define JackJack
 (make-parent empty 'JackParr 2002 'blue))

(define Elastigirl
 (make-parent
 (list Violet Dash JackJack) 'HelenParr 1962 'brown))
(define MrIncredible
 (make-parent
 (list Violet Dash JackJack) 'BobParr 1958 'blue))

Templates for M.R.D.D.
 The template should match the data definition

 Because the d.d. has two parts, so must the template

; template for functions on descendant tree nodes
; dtn-func : parent -> ???
(define (dtn-func p)

… (loc-func (parent-children p))
… (parent-name p)
… (parent-date p)
… (parent-eyes p) …)

; template for functions on lists of children
; loc-func : list of children -> ???
(define (loc-func loc)

(cond
 [(empty? loc) …]
 [else … (dtn-func (first loc)) … (loc-func (rest loc)) …]))

 (Does the second one look familiar? It should—it’s just the
template for lists, with an extra recursive call.)

Example function:
blue-eyed-descendant?

 Unlike blue-eyed-ancestor?, blue-eyed-descendant? must
follow this two-part template.
 (once again, colored portions come from the template)

;; blue-eyed-descendant? : parent -> boolean
;; to determine whether a-parent any of the descendants (children,
;; grandchildren, and so on) have 'blue in the eyes field
(define (blue-eyed-descendant? a-parent)
 (cond

[(symbol=? (parent-eyes a-parent) 'blue) true]
[else (blue-eyed-children? (parent-children a-parent))]))

;; blue-eyed-children? : list-of-children -> boolean
;; to determine whether any of the structures in aloc is blue-eyed
;; or has any blue-eyed descendant
(define (blue-eyed-children? aloc)
 (cond

[(empty? aloc) false]
[(blue-eyed-descendant? (first aloc)) true]
[else (blue-eyed-children? (rest aloc))]))

