
Recursive Data 2

Mutually Recursive Data Definitions
(HTDP sec 15.1)

Previously: Family Trees
 Specifically, ancestor family trees

A family-tree-node is either
 - empty, or
 - (make-child fa mo da na ey)
 where na and ey are symbols
 and da is a number
 and fa and mo are family-tree-nodes

 A self-referential data type of our own
invention

A function on ancestor family
tree nodes
;; blue-eyed-ancestor? : ftn -> boolean

(define (blue-eyed-ancestor? a-ftree)
 (cond

[(empty? a-ftree) false]
[(symbol=? (child-eyes a-ftree) 'blue) true]
[else (or

 (blue-eyed-ancestor? (child-father a-ftree))
 (blue-eyed-ancestor?
 (child-mother a-ftree))))]))

 The colored portions come directly from the
template for ancestor family trees

A new data type: descendant
family trees
 Like ancestor f.t.’s, with one key difference

 each node now knows about its children, instead
of its parents

 Ancestor trees were easy to represent
 You can have at most two parents!

 Descendant trees will be harder
 How do you encapsulate potentially many

children in a structure?

Lists inside structures
 Sure, why not? Let’s write the data definition

for a node:
 (we’ll call it “parent” since each node may have potentially many

children)

; a parent is (make-parent loc n d e)
; where n, e are symbols
; and d is a number
; and loc is a list of children

 Now we have a problem. What’s a “list of
children”?

?

Lists inside structures (take 2)
 Let’s try again, starting with the data definition for a

list of children:

; a list of children is either
; - empty, or
; - (cons p loc)
; where p is a parent
; and loc is a list of children

 We’re still stuck. Now we know what a list of
children is, but “parent” is undefined.

?

Mutually Referential Data
Definitions
 The point is, you need both parts of the

data definition for it to be complete and
legal

; a parent is (make-parent loc n d e)
; where n, e are symbols
; and d is a number
; and loc is a list of children
;
; a list of children is either
; - empty, or
; - (cons p loc)
; where p is a parent
; and loc is a list of children

Examples
(define-struct parent (children name date eyes))

(define Violet
 (make-parent empty 'VioletParr 1990 'brown))
(define Dash
 (make-parent empty 'DashiellParr 1995 'blue))
(define JackJack
 (make-parent empty 'JackParr 2002 'blue))

(define Elastigirl
 (make-parent
 (list Violet Dash JackJack) 'HelenParr 1962 'brown))
(define MrIncredible
 (make-parent
 (list Violet Dash JackJack) 'BobParr 1958 'blue))

Templates for M.R.D.D.
 The template should match the data definition

 Because the d.d. has two parts, so must the template

; template for functions on descendant tree nodes
; dtn-func : parent -> ???
(define (dtn-func p)

… (loc-func (parent-children p))
… (parent-name p)
… (parent-date p)
… (parent-eyes p) …)

; template for functions on lists of children
; loc-func : list of children -> ???
(define (loc-func loc)

(cond
 [(empty? loc) …]
 [else … (dtn-func (first loc)) … (loc-func (rest loc)) …]))

 (Does the second one look familiar? It should—it’s just the
template for lists, with an extra recursive call.)

Example function:
blue-eyed-descendant?

 Unlike blue-eyed-ancestor?, blue-eyed-descendant? must
follow this two-part template.
 (once again, colored portions come from the template)

;; blue-eyed-descendant? : parent -> boolean
;; to determine whether a-parent any of the descendants (children,
;; grandchildren, and so on) have 'blue in the eyes field
(define (blue-eyed-descendant? a-parent)
 (cond

[(symbol=? (parent-eyes a-parent) 'blue) true]
[else (blue-eyed-children? (parent-children a-parent))]))

;; blue-eyed-children? : list-of-children -> boolean
;; to determine whether any of the structures in aloc is blue-eyed
;; or has any blue-eyed descendant
(define (blue-eyed-children? aloc)
 (cond

[(empty? aloc) false]
[(blue-eyed-descendant? (first aloc)) true]
[else (blue-eyed-children? (rest aloc))]))

