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ABSTRACT

VoteBox: A tamper-evident, verifiable voting machine

by

Daniel Robert Sandler

is thesis details the design and implementation of VB, a new soware platform for build-

ing and evaluating secure and reliable electronic voting machines. Current electronic voting systems

have experienced many high-profile soware, hardware, and usability failures in real elections. Re-

cent research has revealed systemic flaws in commercial voting systems that can cause malfunctions,

lose votes, and possibly even allow outsiders to influence the outcome of a national election. ese

failures and flaws cast doubt on the accuracy of elections conducted with electronic systems and

threaten to undermine public trust in the electoral system.

While some consequently argue for total abandonment of electronic voting, VB shows how

a combination of security, distributed systems, and cryptographic principles can yield trustworthy

and usable voting systems. It employs a pre-rendered user interface to reduce the size of the runtime

system that must be absolutely trusted. VB machines keep secure logs of essential election

events, allowing credible audits during or aer the election; they are connected using theAuditorium,

a novel peer-to-peer network that replicates and intertwines secure logs in order to survive failure,

attack, and poll worker error. While the election is ongoing, any voter may choose to challenge a

VB to immediately produce cryptographic proof that it will correctly and faithfully cast ballots.

is work uniquely demonstrates how these disparate approaches can be used in concert to in-

crease assurance in a voting system; the resulting design also offers a number of pragmatic benefits

that can help reduce the frequency and impact of poll worker or voter errors. VB is amodel for

new implementations, but its component techniques can be practically applied to existing systems.

VB ideas should therefore find their way into commercial electronic voting machines as well

as other problem domains in which tamper-evidence, robustness, and verifiability are crucial.
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CHAPTER 1

INTRODUCTION

Electronic voting is at a crossroads. Having been aggressively deployed across the United States as a

response to flawed paper and punch-card voting in the  U.S. national election, digital-recording

electronic () voting systems are themselves now seen as flawed and unreliable. ey have been

observed in practice to produce anomalies that cannot be adequately explained by the poll workers,

voters, or manufacturers. In some cases, voters have observed “vote flipping” phenomena in which

a user action to choose one candidate has caused another to become selected instead. In others,

elections officials have observed irregular voting patterns, such as anomalously high undervoting

(abstention in one or more races) in some districts and not others. Frequently, audit logs kept by the

voting machines prove inconclusive or even incomplete, offering little assistance to those attempting

to assemble a clear picture of the events transpiring on election day.

As  systems proliferated, computer scientists and other scholars began to investigate the pos-

sible hazards of using digital systems to capture votes, and in particular to analyze the specific e-voting

systems in use in the U.S. is line of research culminated in  with independent security reviews

commissioned by the states of California and Ohio; these landmark investigations represent the first

time that outside experts and scholarly researchers have been given access to the inner workings of

these machines, including source code and development documentation. e results of the reviews

are universally damning: they reveal that every  voting system currently in widespread use in

the United States has severe deficiencies in design and implementation. While they were most likely

developed with every intention of safeguarding the vote, these systems have demonstrated through

failure and under scrutiny that they cannot and should not be trusted with the vote. (Chapter 
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describes these research efforts and analyses in more detail.)

e consequence of these experiences and examinations, as of , is widespread backlash

against  systems. Many jurisdictions are now decertifying or restricting the use of electronic

voting systems. However, by abandoning the very idea of electronic voting we also sacrifice several

advantages offered by these systems to voters and administrators.

Accessibility. Many voters are physically unable to vote on a paper ballot; electronic voting systems

help these voters cast ballots without the assistance of another person in the voting booth.

Voters with vision impairments can don headphones and interact with an electronic voting

system outfitted with an audio interface, for example.

Flexibility. Unencumbered by the physical limitations of a finite and static paper ballot, e-voting

systems can support potentially many ballot designs of arbitrary length.

Usability. Computerized voting systems have the potential for much richer user experiences than

paper, including feedback that may be able to help voters avoid mistakes. Anecdotal evidence,

as well as recent human factors studies (using VB), show that voters have a strong sub-

jective preference for electronic voting as well.

e serious security and reliability problems of current  voting systems must not deter us from

striving to develop systems with these valuable properties. is, then, is the purpose of the VB

project: to explore techniques for building trustworthy -style voting systems. In this thesis I detail

the design of our VB system, which achieves this end by composing research techniques in the

areas of security, distributed systems, and cryptography. In particular, VB demonstrates the

following key techniques:

Auditorium (Chapter ), a novel hybrid of secure logging and peer-to-peer networking that con-

nects VBes in a polling place and provides resistance to data loss, even in extreme situ-

ations, and tamper evidence in those situations where data loss cannot be prevented. e logs

produced by Auditorium contain enduring proofs of the correct operation of the system on

election day. Correctness, however, can be a complex predicate, involving the existence and
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order of multiple critical events in the record; rather than solve the log analysis problem for the

voting domain only, I developed Querifier (Chapter ), a general-purpose tool that can apply

any set of logical rules to a broad class of secure logs.

Verifiability (Chapter ), in the form of a ballot challenge system. Any ballot may potentially serve

as an election-day test of the system, offering cryptographic proof that the voter’s intended

choices have been correctly captured for tallying, regardless of any defects in the underlying

soware (“soware independence”). is approach, which offers voters a way to initiate real-

time audits of voting equipment, is based on work by Benaloh []; VB contributes an

adaptation of this work to the Auditorium environment that makes this cryptographic tech-

nique usable in practice.

Reduced codebase (Chapter ), an important consideration when attempting to analyze, certify,

or audit a voting system. While the above techniques help detect and recover from problems,

preventing them in the first place involves reading and understanding the source code, causing

the size and simplicity of that code to become a concern. We directly apply the pre-rendered

user interfaces () technique, first proposed for e-voting assurance by Yee [], to evict

complexity from the VB soware that must operate correctly on election day.

VB thus contributes novel inventions (Auditorium), improvements of state-of-the-art work

(ballot challenge), and fresh implementations of best practices (). Moreover, it uniquely demon-

strates how disparate results from computer science and e-voting research may be combined to mag-

nify the effects of each. e fusion of these approaches yields additional pragmatic benefits, including

an improvement to the conventional process of postal voting (Chapter ). e VB system has

been designed to be robust to accidental failures that commonly occur in elections as well as the theo-

retical dangers inveighed against by the research community; we can therefore trust a VB—or

any electronic voting system following its design blueprint—with the vote.
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BACKGROUND

2.1 The move to electronic voting in the United States

e conclusion of the  U.S. Presidential election illustrated starkly the limitations of much of

the voting technology in widespread use across the country at that time. Punch cards (used by about

a third of voters in  []) fared even worse: Mechanical problems, such as incompletely-punched

cards (a condition that came to be known as “hanging chads”), created cast ballots that were am-

biguous. Usability problems, particularly with “butterfly ballots” that do not clearly indicate which

candidate a particular punch location may correspond to, caused ballots to be unambigously cast for

the wrong person.

Lever-based voting machines (¹⁄₆ of voters []) had their own problems. Based on technology

originally invented more than a century earlier [] (and out of manufacture since  []), they

are cumbersome, costly to maintain, and prone to mechanical failures. More importantly, they offer

no auditability; because they operate by incrementing physical counters, a voter’s choices are not

captured in a single recountable ballot but instead added immediately and irrevocably to the tally.

e Caltech/MIT Voting Project [] estimated that as many as  million votes were lost in  due

to these sorts of technical problems; its recommendation in was that outdated voting technology

be replaced and that federal money be set aside for this purpose.

To this report and others like it in the wake of this debacle, the United States Congress responded

by passing the Help America Vote Act of  () [], Title I of which allocated money for states

to improve or replace aging voting technologies:
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. .        .
(a) E  P.—

() I G.—Not later than  days aer the date of the enactment
of this Act, the Administrator shall establish a program under which the Ad-
ministrator shall make a payment to each State eligible under subsection (b)
in which a precinct within that State used a punch card voting system or a
lever voting system to administer the regularly scheduled general election for
Federal office held in November  (in this section referred to as a “quali-
fying precinct”).

() U  F.—A State shall use the funds provided under a pay-
ment under this section (either directly or as reimbursement, including as
reimbursement for costs incurred on or aer January , , under multi-
year contracts) to replace punch card voting systems or lever voting systems
(as the case may be) in qualifying precincts within that State with a voting
system (by purchase, lease, or such other arrangement as may be appropri-
ate) that—

(A) does not use punch cards or levers;
(B) is not inconsistent with the requirements of the laws de-

scribed in section ; and
(C) meets the requirements of section .

[, Title I, Sec.  (a).]

Spurred by this mandate, many states did indeed choose to replace their voting systems. In ,

the deadline established in  for states to participate in the equipment replacement program, 

of registered voters were in precincts that had switched to optical-scan systems, and  of voters

would vote on  systems. []

2.2 Criticism of e-voting

In February , activist BevHarris of Black BoxVoting disclosed [] that she had found, viaWeb

searching, a public ftp server that allowed access to source code from Diebold Election Systems, Inc.

(), manufacturers of thewidely-deployedAccuVote touch-screen  system. She subsequently

made the Diebold files (since removed from the ftp server) available and identified several ways in

which attackers might be able to alter votes and cover their tracks by tampering with audit logs. []
http://www.blackboxvoting.org
As of August , Diebold’s e-voting subsidiary is now known as “Premier Election Solutions.”

http://www.blackboxvoting.org
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Computer scientists and security researchers, long concerned about the possible dangers of elec-

tronic voting but stymied by the secrecy surrounding commercial e-voting systems, promptly exam-

ined the Diebold source code for flaws. Doug Jones posted an early analysis of his findings among

the Diebold files []. at samemonth, another group of computer scientists posted a detailed tech-

nical report (the so-called “Hopkins paper” was later published as Kohno et al. []) analyzing the

source code to the , identifying a wide variety of flaws, none of which require source code access

to perpetrate. ese included:

A weak voter-authentication protocol allows anyone with a specially-designed smartcard to

cast an unlimited number of votes.

Ballots and logs are encrypted, but the same symmetric  keyis used on every AccuVote

(and had been in use since ).

Using features of the system designed to facilitate soware upgrades in the field, an attacker

can introduce malicious code into the system.

Other studies followed [, , , , , , ], including a Princeton study [] in which

researchers found that anyone with physical access to a Diebold voting machine could introduce

a “voting machine virus” into the system. e regular process of collecting votes at the end of an

election requires poll workers to use flash memory cards to download ballot data from each; the

same memory card can be (and is usually) used to download votes from many machines in turn. In

combination with the malicious-soware-upgrade flaw identified by the Hopkins paper, an attacker

can introduce (to a “patient zero” machine) carefully-craed code that will spread from machine to

machine as votes are collected.

In , responding both to the alarms sounded by researchers and the accumulating news re-

ports of e-voting failures, the states of California and Ohio each commissioned comprehensive re-

views of voting systems used in those states. Debra Bowen, California Secretary of State, arranged for
Dr. Jones has a long history of interest in psephology (and voting equipment in particular) predating the Diebold code

leak and even the problems in ; he explains that he saw an early version of the AccuVote when it was called the I-Mark
Electronic Ballot Station [].

#define DESKEY ((des key*)”F2654hD4”)
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a “top-to-bottom review” in which source code and documentation for voting systems from Hart In-

terCivic, Diebold, and Sequoia were acquired by the state and submitted to teams of security experts

for study. Other teams behaved as “red teams,” instructed to attack the physical voting machines.

A similar arrangement was created by Secretary of State Jennifer Brunner for Ohio’s Evaluation &

Validation of Election-Related Equipment, Standards & Testing () project.

e results were universally damning [, , , , ]. Serious security problems were dis-

covered in every voting system certified for use in California and Ohio, including s and optical

scanners. As a result, California promptly limited the use of s and require manual audits of

paper ballots to double-check electronic tallies. Brunner recommended that Ohiomove to centrally-

tabulated optical-scan ballots and expand absentee and early voting.

While both security flaws and soware bugs have received significant attention, a related issue has

also appeared numerous times in real elections using s: operational errors and mistakes. Chap-

ter  recounts my experience investigating anomalous electronic voting records in a  primary

election in Webb County, Texas. More recently, in the January,  Republican presidential pri-

mary in South Carolina, several  iVotronic systems were incorrectly configured subsequent to

pre-election testing, resulting in those machines being inoperable during the actual election. “Emer-

gency” paper ballots ran out in many precincts and some voters were told to come back later [].

2.3 Advantages of computerized voting

ewave of scholarly criticism and public malfunctions has fed a broadening public backlash against

electronic voting. Today’s commercial  voting systems are fragile, insecure, and opaque; they are

therefore highly deserving of such condemnation. In general, soware systems cannot be trusted to

be entirely free of bugs, nor can poll workers and election officials be expected to flawlessly operate

complex voting equipment (electronic or otherwise).

Many critics have proposed, and jurisdictions have responded by, returning to some form of

paper-based voting, including optical scan (also called mark sense) systems. Voters using such a sys-

tem mark a paper ballot in such a way that it can be scanned by a computer, inspired by similar

technology developed for standardized testing. []
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A piece of paper can be verified correct by the voter before personally placing it in a ballot box.

Recounts may be performed of these physical records, which are assumed to be harder to forge and

easier to authenticate than electronic data. By rushing to return to paper ballots, however, we neces-

sarily abandon the many benefits (introduced in Chapter ) that fully electronic voting technology

affords.

2.3.1 Accessibility

Even in jurisdictions where s are being phased out, precincts are commonly required to have

one or two electronic voting machines on-hand expressly for purposes of accessibility.  systems

commonly support audio feedback (in the form of spoken prompts through attached headphones)

that makes voting possible for users with low or no vision. Voters with disabilities that prevent them

from marking paper can use so-called “sip and puff” assistive devices to provide input to s as

well. e ability to cast a ballot without assistance is an essential part of the secret vote, and so for

this reason alone s are a required component of future elections.

2.3.2 Flexibility

Apaper ballot is finite; it can only hold somany races, somany names, without becoming illegible. In

a race such as the -candidate  California gubernatorial recall election, [], the ballot design

flexibility afforded by electronic voting is not a trivial concern. Beyond merely being unbounded

in length, ballots presented on a computer screen can change font size, color, or other presentation

details to accommodate the vision or preference of the voter. ey may allow the voter to switch

back and forth between languages (whereas including two or even three languages on a paper ballot

further reduces the amount of information that can be printed on it).

Flexibility is an even greater asset for elections administrators. Electronic systems obviate the

need to physically transport large boxes of paper ballots to the polling place on election day and back

again for tallying (a process which is itself greatly accelerated in the digital domain). An unlimited

number of ballot designs can be instantly deployed in any quantity in any polling place, which is an

enormous boon for early voting (in which voters from many home precincts converge on a single
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polling place). is “weightless” property of e-voting systems is a crucial enabling factor for election

day vote centers, a trend designed to dramatically improve the convenience (and, it is argued, the

turnout) of voting. Pioneered in Colorado, vote centers replace many small residential polling places

in a jurisdiction (e.g. a county) with a few large voting facilities located in population centers, not un-

like early voting (albeit with many more voters). [] Such an arrangement must accommodate tens

or hundreds of thousands of votes cast on hundreds of ballot styles assigned to each voter based on

his residence address, an infeasible proposition with paper ballots but quite tractable with electronic

systems.

2.3.3 Usability

s are general-purpose computers, and as such they have the potential to offer user experiences

that are every bit as interactive, helpful, and fun as any personal computer or smartphone. Today’s

electronic voting systems already provide valuable feedback that can avoid voter mistakes that would

cause a paper ballot to be disqualified; by enforcing the correct maximum number of votes in a race,

the  effectively prevents the user from overvoting. s can also alert voters to unintentional

undervotes by offering a final review screen that allows a voter to ensure she has cast votes in each

contest of interest.

Recent user studies, conducted by human factors researchers at Rice using VB, reveal that

electronic voting has a very high subjective usability when compared with other conventional voting

schemes: paper ballots, punch cards, and lever machines. [] is corroborates anecdotal accounts

that voters do in fact prefer to vote on digital systems, and may indicate that voters may be opposed

to efforts to replace s with more conventional voting systems.

2.4 Toward software independence

Recently, the notion of soware independence has been put forth by Rivest and other researchers

seeking a way out of this morass:
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A voting system is soware-independent if an undetected change or error in its soware
cannot cause an undetectable change or error in an election outcome. []

Such a system produces results that are verifiably correct or incorrect irrespective of the system’s

implementation details; any soware error, whether malicious or benign, cannot yield an erroneous

outputmasquerading as a legitimate cast ballot. In general, the voter’s intent is always represented ac-

curately and faithfully in the final tally. is idea generalizes beyond soware, of course; amechanism

independent voting system is impervious to problems of implementation irrespective of technology.

We might say that the punch-card voting systems used in Florida in  (as described earlier in this

chapter) were not mechanism independent, because an undetected error in the system (in this case, a

failure to punch cards completely) was able to cause an undetectable error in the outcome (the voter’s

original intent was lost on certain cards).

When verifying that a voting system is soware- (or mechanism-) independent, one typically

breaks this problem down into two pieces, each of which must be proven:

Cast as intended. Each vote must be cast—permanently recorded in some way—as an accurate and

unambiguous representation of the voter’s intent.

Counted as cast. Having been cast correctly, the votes must now be counted accurately.

To satisfy the counted as cast test, a voting system must be able to prove that the output tally

matches exactly the input cast ballots. When those ballots are plain text (i.e. not encrypted), this

can be achieved by publishing both the set of ballots and the computed total, but ballot encryption

complicates matters. In the non-electronic realm, this problem is addressed by recounts, sometimes

conducted by hand, but without additionalmeasures a recount of an electronic system ismeaningless

because of the cast as intended problem.

e cast as intended property is the harder of the two to satisfy, particularly for a , whose

electronic workings are difficult to reveal. A voter may directly examine the piece of paper she is

about to place in a physical ballot box, but she may not directly examine the bits stored on her behalf

on a flash card deep inside a  (and even if she could, those bits might be encrypted). Nonetheless,
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VB includes measures that allow voters to verify this property, as well as the counted as cast

property. e specific techniques involved are described in Chapter .

2.5 Reducing the trusted computing base

Soware independence allows voters and administrators to verify the correct operation of a voting

machine. What if that verification fails, due to a bug or design flaw or even malice? It is crucial to

detect that problems exist, but to prevent them from occurring in the first place, voting sowaremust

be carefully audited well before election day.

is is a laborious process, involving human auditors. One approach to mitigating the difficulty

of this task is to draw a line around the set of functions that are essential to the correctness of the vote

and aggressively evict complexity from that set. If assurance can come from reviewing and auditing

voting soware, then it should be easier to review and ultimately gain confidence in a smaller soware

stack.

Pre-rendered user interface () is an approach to reducing the amount of voting soware

that must be reviewed and trusted []. Exemplified by Pvote [], a  system consists of a

ballot definition and a soware system to present that ballot. e ballot definition comprises a state

machine and a set of static bitmap images corresponding to those states; it represents what the voter

will see and interact with. e soware used in the voting machine acts as a virtual machine for this

ballot “program.” It transitions between states and sends bitmaps to the display device based on the

voter’s input (e.g., touchscreen or keypad). e voting  is no longer responsible for text rendering

or layout of user interface elements; these tasks are accomplished long in advance of election day

when the ballot is defined by election officials.

A ballot definition of this sort can be audited for correctness independently of the votingmachine

soware or the ballot preparation soware. Even auditors without knowledge of a programming lan-

guage can follow the state transitions and proofread the ballot text (already rendered into pixels). e

voting machine  should still be examined by soware experts, but this code—critical to capturing

the user’s intent—is reduced in size and therefore easier to audit. Pvote comprises just  lines of

Python code, which (even including the Python interpreter and graphics libraries) compares favor-
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ably against current s: the AccuVote  involves over , lines of C++ running atop Windows

 []. Chapter  shows howVB applies the  technique to reduce its own code footprint.

Compartmentalization, an alternative approach to reducing the trusted computing base, is demon-

strated by Sastry et al. []. e trusted program modules in their system are forced to be small and

clearly separated by dedicating a separate computer to each. e modules operate on isolated s

andmemory, and are connectedwithwires thatmay be observed directly; eachmodulemay therefore

be analyzed and audited independently without concern that they may collude using side channels,

although there is still a possibility of leakage through other means (storing vote data or transmitting

it via radio, for example). Additionally, the modules may be powered off and on between voters to

eliminate the possibility of state leaking from voter to voter due to a bug. (VB incorporates

some of this insight into its design, as shown in Chapter .)

2.6 The importance of audit logs

Even trustworthy systems can be misused, and this problem occurs with unfortunate regularity in

the context of voting. In the case of electronic voting, poll workers are expected to correctly deploy,

operate, and maintain large installations of unfamiliar computer systems.  vendors offer training

and assistance, but on election day there is typically very little time to wait for technical support while

voters queue up.

In fact, operational and procedural errors can (and do) occur during elections. Machines unex-

pectedly lose power, paper records are misplaced, hardware clocks are set wrong, and test votes (see

Section . below) are mingled with real ballots. Sufficient trauma to an honest  may result in

the loss of its stored votes.

In the event of an audit or recount, comprehensive records of the events of election day are essen-

tial to establishing (or eroding) confidence in the results despite these kinds of election-day mishaps.

Many s keep electronic audit logs, tracking election day events such as “the polls were opened”

and “a ballot was cast,” that would ideally provide this sort of evidence to post facto auditing efforts.

Unfortunately, current s entrust each machine with its own audit logs, making them no safer

from failure or accidental erasure than the votes themselves. Similarly, the audit logs kept by cur-
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rent s offer no integrity safeguards and are entirely vulnerable to attack; any malicious party with

access to the voting machine can trivially alter the log data to cover up any misdeeds.

eAuditorium system (Chapter ) confronts this problem by using techniques from distributed

systems and secure logging to make audit logs into believable records. All voting machines in a

polling place are connected in a private broadcast network; every election event that would conven-

tionally be written to a private log is also “announced” to every voting machine on the network, each

of which also logs the event. Each event is bound to its originator by a digital signature, and to earlier

events from othermachines via a hash chain. e aggressive replication protects against data loss and

localized tampering; when combined with hash chains, the result is a hash mesh [] encompassing

every event in the polling place. An attacker (or an accident) must now successfully compromise

every voting machine in the polling place in order to escape detection.

2.7 Testing

Regrettably, the conventionalmeans bywhich today’s commercial votingmachines are deemed trust-

worthy is through testing. Long before election day, the certification process typically includes some

amount of analysis and testing by independent testing authorities. e Election Assistance Com-

mission, created by  in , is responsible for promulgating recommendations for evaluating

voting systems, including a set of guidelines for testing [, Volume II].

e tests recommended by the , including examination of source code, may be performed

by one of four (as of this writing []) -certified testing laboratories. is same openness is not

afforded to other experts and scholars in the field; in particular, the source code of voting systems has

traditionally been considered a trade secret by vendors and is not disclosed to researchers. erefore,

there has long been concern that the necessary expertise required to identify weaknesses and prob-

lems is not being brought to bear on the problem. [] As proof we need look no further than the

litany of problems (highlighted in Section .) identified by outside researcherswithout the assistance

of voting system vendors.

Complementary to certification testing, logic and accuracy (L&A) testing is a common black-box
ese guidelines are voluntary; no vendor or jurisdiction is bound by them.
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testing technique practiced by elections officials, typically in advance of each election. L&A testing

typically takes the form of a mock election: a number of votes are cast for different candidates, and

the results are tabulated and compared against expected values. e goal is to increase confidence in

the predictable, correct functioning of the voting systems on election day.

Similar to L&A testing, parallel tests are performed on election day with a small subset of vot-

ing machines selected at random from the pool of “live” voting systems. e units under test are

sequestered from the others; as with L&A testing, realistic votes are cast and tallied. By performing

these tests on election daywithmachines that would otherwise have gone into service, parallel testing

is assumed to provide a more accurate picture of the behavior of other voting machines at the same

time.

e fundamental problem with these tests is that they are artificial: the conditions under which

the test is performed are not identical to those of a real voter in a real election. It is reasonable to

assume that a malicious piece of voting soware may look for clues indicating a testing situation

(wrong day; too few voters; evenly-spread voter choices) and behave correctly only in such cases.

e demonstration vote-stealing program developed by Feldman et al. [] behaves exactly this way,

suppressing malicious behavior when data on the machine indicates that testing is underway. A

soware bug may of course have similar behavior, since faulty s may behave arbitrarily. For

example, a bug that only manifests when many votes have been cast or several hours have elapsed

is unlikely to be identified using L&A test procedures. We must also take care that a malicious poll

worker cannot signal the testing condition to the voting machine using a covert channel such as a

“secret knock” of user interface choices.

Given this capacity to “lay low” under test, the problem of fooling a votingmachine into believing

it is operating in a live vote-capture environment is paramount []. Because L&A testing commonly

makes explicit use of a special code path, parallel testing is themost promising scenario. It presents its

own unique hazard: if the test successfully simulates an election-day environment, any votes captured

under test will be indistinguishable from legitimate ballots cast by real voters, so special care must be

taken to keep these votes from being included in the final election tally.
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2.8 Cryptography and e-voting

Many current commercial s attempt to use encryption to protect the secrecy and integrity of

critical election data; the many studies and audits described in Section . have demonstrated that

these attempts are universally unsuccessful.

A first step is to encrypt votes to protect them from prying eyes aer they are cast and before

they are counted; this is a straightforward analogy to the physical security of the voting booth and

the ballot box in conventional paper voting. Unfortunately, this is insufficient for voter verifiability:

how does she know that her ballot was encrypted correctly (or, indeed, was correct at the time it was

encrypted)? How can ballots be safely decrypted during the tally process, and how can the tally be

confirmed to be accurate?

Researchers have recently developed a number of sophisticated cryptographic techniques to ad-

dress these problems in the voting domain. Some assist with aspects of verifiability, others integrity,

and still others privacy. e major techniques in the field are summarized below.

Mixnets. One line of research has focused on encrypting whole ballots and then running them

through a series of “mix nets” (adapting work by Chaum originally for anonymous email [])

that will re-encrypt and randomize ballots before they are eventually decrypted (see, e.g., [,

]). If at least one of the mixes is performed correctly, then the anonymity of votes is pre-

served. is approach has the benefit of tolerating ballots of arbitrary content, allowing its

use with unconventional voting methods (e.g., preferential or Condorcet voting). However, it

requires a complex mixing procedure; each stage of the mix must be performed by a different

party (without mutual shared interest) for the scheme to be effective.

Homomorphic tallying. e encryption system allows encrypted votes to be added together by a

third party without decrypting them; the individual vote plaintexts are therefore concealed

during tabulation. Many ciphers, including El Gamal public key encryption, can be designed

to have this property. See Chapter  for the application of this technique in VB.

Zero-knowledge proofs. In any voting system, we must ensure that votes are well formed. For ex-

ample, we may want to ensure that a voter has made only one selection in a race, or that the
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voter has not voted multiple times for the same candidate. With a plain-text ballot containing

single-bit counters (i.e.,  or  for each choice) this is trivial to confirm, but homomorphic

counters obscure the actual counter’s value with encryption. By employing zero-knowledge

proofs (particularly non-interactive zero knowledge proofs, or s []), a machine can in-

clude with its encrypted votes a proof that each vote is well-formed with respect to the ballot

design (e.g., at most one candidate in each race received one vote, while all other candidates

received zero votes). Similarly, s can be used to prove (without disclosing the decryption

key) that a homomorphically summed vote total is decrypted correctly. e attached proof is

zero-knowledge in the sense that the proof reveals no information that might help decrypt the

encrypted vote. Note that although s like this can prevent a voting machine from creating

invalid ballots or stuffing the ballot box, they cannot prevent a voting machine from flipping

votes from one candidate to another (cast as intended).

Bulletin boards. Acommon feature ofmany cryptographic voting systems is that all votes are posted

for all the world to see. Individual voters can then verify that their votes appear on the board

(e.g., locating a hash value or serial number “receipt” from their voting session within a posted

list of every encrypted vote). Any individual can then recompute the homomorphic tally and

verify its decryption by the election authority.

Blind signatures. Originally developed byFujioka, Okamoto, andOhta () [] and implemented

in the Sensus [] and  [] voting systems, blind signatures allow election administrators

to issue cryptographically official but “blank” ballots to voters. e election administrator has

not seen the voter’s choices at the time of the signature, hence they are “blind.” Only registered

voters can obtain blind signatures, so only they can vote; these signatures may only be used

once, preventing duplication of the credential. In the  protocol, once a voter has completed

the ballot, it is then sent (unblinded) over an anonymous channel to the tabulator.
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2.9 “Paper cryptography”

In response to the difficulty in explaining cryptography to non-experts (and, in some cases, as an

intellectual exercise), scholars have designed a number of cryptographic paper-based voting systems

that have end-to-end security properties. ey do not in general apply “traditional” numerical cryp-

tography (, El Gamal, and the like) but they are information-theoretic techniques nonetheless

and will be referred to here as “paper cryptography.” By transporting cryptographic approaches out

of the realm of abstract algebra and into the physical domain, it is hoped that the result will be less

frightening to users but no less powerful.

e earliest such approach was developed by Chaum []; it uses visual cryptography (invented

by Naor and Shamir []) to create a printed ballot comprising two partially-transparent parts that,

when overlaid, reveal the voter’s choices, but reveal nothing at all in isolation. One half of this ballot

is retained by the voter as a receipt; an imprinted identifier allows her to consult a bulletin board to

ensure that her choices were tallied (via a re-encryption mixnet) correctly.

Prêt à Voter [, ] also uses a separable ballot design to allow the voter to leave the polling place

with a receipt that proves the existence of her ballot in the tally (but not the exact vote cast); it achieves

this property by randomizing the order of candidates. In order to cast a ballot, the voter’s receipt is

scanned at the polling place and stored for later tabulation. e ballot, which preserves the voter’s

privacy should she be forced to reveal it, is simply a list of checked boxes with the (randomized)

candidate names removed. e receipt also contains an encrypted value; only election trustees are

able to use this value to reconstruct the correct order of the candidates and thereby count the ballot.

Punchscan [], a subsequent design by Chaum et al., also uses a physical ballot design that be-

haves as a two-share cipher thanks to randomized candidate ordering. A Punchscan ballot comprises

two overlaid (opaque) sheets. e top layer is imprinted with candidate names, each associated with

a letter code; there is also a separate set of holes, one per candidate. e bottom layer contains the

same letter codes, positioned to be visible through the holes when the top layer is overlaid. e voter

casts her ballot by using a bingo dauber. When applied to a hole in the two-layer ballot, the dauber
Contrast this with the idiomatic Chinese 纸老虎 (“paper tiger”), a fearsome-seeming but ultimately toothless beast.
A bingo dauber is an ink marker with a very large tip; it is used for convenient marking of cards in the lottery game

Bingo.
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creates a sufficiently large mark that some ink is le on each layer. e code assignment on the top

layer, and the order of codes on the bottom layer, match one another but are chosen randomly for

each ballot; therefore, once separated, neither layer contains enough information on its own to reveal

the voter’s choices. Each half retains a serial number, however, and with this election officials are able

to reconstruct the voter’s choices using just one half of the ballot (using a database mapping serial

numbers to candidate code assignments). A voter therefore scans one half of her completed ballot

at the polling place and takes it home as a receipt; the other half is destroyed. While she cannot use

this receipt to prove to anyone how she voted, she can ensure that her ballot was received (cast-as-

intended) by confirming that her receipt is present on an official bulletin board where all scans are

posted. She can also verify the correctness of the tally (counted-as-cast) by auditing a portion of the

tabulation process.

is line of research has culminated in Scantegrity [], which uses a single ballot sheet with tear-

off strips that separate the encrypted shares; and and Scantegrity II [], which associates with each

candidate a confirmation code that is revealed by invisible ink during the ballot marking process.

e latter is designed to resemble as closely as possible the current optical-scan voting process. It has

the distinction of being the first paper-cryptography voting system to be selected for use in a civic

election: the city of Takoma Park, Maryland plans to use Scantegrity II in its municipal elections in

November  (a mock election to test the system is imminent as of this writing).

reeBallot [, ] requires a voter to create three different ballots, two of which correspond to

her true choice, and one of which is the opposite of her choice. One of these ballots is duplicated as a

receipt, which the voter can then check against a public bulletin board of votes cast to confirm (with

probability 1
3 ) that her vote is intact.

e first difficulty besetting these paper-crypto approaches is one of usability. ere are accessi-

bility implications of schemes that necessarily revolve around paper (Punchscan, Scantegrity, Prêt à

Voter, reeBallot): voters with disabilities that prevent them from marking paper will be unable to

use the paper-based systems without assistance.

In general, despite being nominally paper-based, they are substantially more complex (and likely

confusing) than conventional paper balloting systems. Early indications are that such additional
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measures will increase unacceptably the burden on the voter to understand the system in order to

correctly and confidently cast a ballot. Unusual ballot designs must be explained to voters (and,

equally importantly, poll workers) to ensure that each voter is able to vote correctly. In reeBal-

lot, voters who do not correctly mark their ballots (including the counterintuitive “opposite vote”

described above) can cause overall vote totals to be unrecoverably flawed.

More seriously, however, these approaches may not be legal in many jurisdictions. For example,

they commonly rely upon candidates appearing on the ballot in randomized order; this would be

forbidden in Texas, where state statute requires candidates to appear in a specific order.

2.10 Paper plus computers: Optical scan and 

Optical-scan voting systems, in which the voter marks a piece of paper that is both read immediately

by an electronic reader/tabulator and reserved in case of a manual audit, achieve the cast as intended

property at the cost of sacrificing some of the usability and logistical benefits afforded by s.

e voter-verifiable paper audit trail () allows a  to create a paper record for the voter’s

inspection and for use in an audit, but it has its own problems. Adding printers to every voting

station dramatically increases the mechanical complexity, maintenance burden, and failure rate of

those machines. A report on election problems in the  primary in Cuyahoga County, Ohio

found that . of  records were destroyed, blank, or “compromised in some way” [, p. ].

Even if the voter’s intent survives the printing process, the rolls of thermal paper used by many

current  printers are difficult to audit by hand quickly and accurately []. It is also unclear

whether voters, having already interacted with the  and confirmed their choices there, will dili-

gently validate an additional paper record. (In the sameCuyahoga primary election, a different report

found that voters in fact did not know they were supposed to open a panel and examine the printed

tape underneath [, p. ].)
e particular order depends on the candidate’s party affiliation. Candidates affiliated with political parties are listed

in order of the votes received by each party in the prior gubernatorial election []; unaffiliated candidates appear in an
order chosen by random lottery []. In each case, the order is fixed for all ballots cast in the state.
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2.11 Internet voting

e question of voting over long distances via the Internet is recurrent. Fundamental problems of

voter privacy and equipment trustworthiness (described in more detail in Chapter ) plague efforts

to provide Internet voting for any serious election.

Nonetheless, attempts have beenmade. A recent example: eU.S. military planned to deploy in

 an Internet-based electronic voting system called the Secure Electronic Registration andVoting

Experiment (). ey convened a panel of experts to evaluate the proposed system; a subset of

those experts wrote a report describing all of the problems with voting over the Internet, such as

easily compromised client platforms []. e military canceled the program, replacing it with a

fairly simple fax-based scheme that is arguably even less secure than  [].

In the U.S., several “primary” elections have been conducted over the Internet, including the

recent “Democrats Abroad” primary election. Standard web browsers on standard client comput-

ers were used, and no particular measures were taken (or really could have been taken) to prevent

voter bribery and coercion, much less deal with viruses or worms that might try to compromise the

browser’s behavior. In fact, the Democrats Abroad’s primary did not have a secret ballot. In a ra-

dio interview, the administrator of the election said that the votes were actually public. e official

disseminated results only present country-by-country subtotals, so it’s unclear exactly how much

privacy is granted to Democrats Abroad’s voters.

Internet voting has been used, perhaps more successfully, in national elections in Estonia [].

e user authentication builds on a national  card which contains a smart-card chip. Prospective

voters insert the card into their computer, with a suitable adapter, and it allows them to authenticate

to a government web site over an -encrypted channel where they may cast a vote. Voters may

vote as many times as they like, with the final one actually being tallied. e ability to cast multiple

votes provides some limited resistance against bribery and coercion attacks. e use of  provides

resistance against network man-in-the-middle attacks. Nothing in the Estonian voting architecture

provides any protection against compromised client platforms.
http://weekendamerica.publicradio.org/display/web/2008/01/25/demsabroad/

http://www.democratsabroad.org/sites/default/files/DA%20Global%20Primary%20Results%20FINAL%

20REVISED.pdf

http://weekendamerica.publicradio.org/display/web/2008/01/25/demsabroad/
http://www.democratsabroad.org/sites/default/files/DA%20Global%20Primary%20Results%20FINAL%20REVISED.pdf
http://www.democratsabroad.org/sites/default/files/DA%20Global%20Primary%20Results%20FINAL%20REVISED.pdf
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Among commercial  voting systems, several vendors allow the use of modems to transmit

election results (insecurely). While some states ban the use of these modems, others allow them

under the guise of “unofficial” early election results. While this ignores the risk that an attacker

may be able to compromise the tabulation system by calling it up on the telephone, these states are

assuming that the records stored in the  systems themselves will survive the interval between the

end of the election and their return to the voting warehouse, aer which electronic results can be

extracted directly from the voting machines. A similar property holds for bulletin boards, which can

be disseminated in any way that data can be transmitted.

Helios [] is aWeb-based system that sacrifices coercion resistance for a verifiable andminimally

complex crypto-voting system that can be used from a voter’s home computer. It employs homomor-

phic encryption, allowing a simplified variant of Benaloh’s ballot challenge [] with a single trusted

server maintaining a bulletin board for cast ballots. A mixnet is used for privacy-preserving decryp-

tion. Helios is intended for “low-coercion elections,” but if used exclusively in supervised remote

polling places it could be suitable for high-stakes national contests as well.

Civitas [] is an ambitious cryptographic voting system designed to allow Internet-based voting

on a large scale. It too employs homomorphic encryption, mixnets, and a bulletin board. It suffers

some limitations that preclude its straightforward deployment in nationwide elections, notably the

requirement that each voter be issued a long-term cryptographic key pair for the purpose of acquir-

ing per-election voter credentials. Moreover, an explicit design goal of the Civitas work is allowing

unsupervised Internet voting. e authors admit that this requires trust in the end user’s computer,

and they respond to this by suggesting that voters seek out a voting terminal that they trust (e.g.,

one maintained by a political party or social organization). is proviso causes a practical Civitas

deployment to look quite a bit like the remote polling places described in Chapter .

Adder [] is another Internet-scale cryptographic voting system, incorporating the (now-familiar)

techniques of homomorphic tallying and bulletin boards. Like Civitas, Adder requires trusted hard-

ware; the authors of Adder also admit that the system does not support methods for the voter to

verify the correct operation of the equipment and that the database required to maintain the system

is vulnerable to tampering or loss. e techniques described in the following chapters address these
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problems (among others) directly.

2.12 Byzantine faults in distributed systems

As Chapter  will show, a VB polling place is a distributed system. In the distributed sys-

tems community, a distinction is drawn between simple, detectable, obvious failures (the fail stop

model) and failures that cause participating entities to behave arbitrarily. is latter case, termed

the Byzantine failure model, allows for faulty nodes to continue operation but to do so incorrectly,

and even to present inconsistent data to other nodes in the system. Such a model is used by security

researchers to encompass malicious behavior, and in the case of electronic voting we may consider

either a malicious or simply buggy voting system to be a Byzantine failure.

In Lamport’s original definition of this failure model [], he shows that a distributed system

whose goal is state replication across nodes can tolerate up to one-third of those nodes in a Byzantine

failure state. More formally, to tolerate f faulty nodes, a system must be comprised of n ≥ 3f + 1

nodes. Byzantine fault tolerance () in this case is defined as overall correct operation of the system

(that is, the system reaches the correct state, or equivalently provides the correct answer to some

client) in the face of f nodes disrupting the system’s operation arbitrarily.

e state-machine replication perspective is a powerful one, encompassing many deterministic

networked services, and Practical Byzantine Fault Tolerance [] shows how such failures can be

recovered efficiently in an asynchronous system. More recently, the PeerReview [] system leverages

the determinism of a state machine replication system to identify faulty nodes by probabilistic audits;

auditors, provided with the node’s inputs, run a reference implementation to confirm that the node’s

outputs are correct. Regrettably,  techniques do not apply in the voting realm for exactly this

reason; the inputs to the system are not deterministic (incorporating cryptographic randomness as

shown in Chapter ) and the inputs are not available for replay (because the inputs, in this case, are

the voter’s actions in the booth, which must remain secret).



CHAPTER 3

AUDITORIUM

3.1 Introduction

While Chapter  will address the issue of correctness of voting machines, this chapter presently con-

siders a different facet of the election problem, inspired by a real-world experience with a contested

election involving  systems.

When the results of an election are in doubt, the usual course of action is to perform a recount.

When s are used by the electorate, the data surveyed during such a recount is purely electronic,

and hence, fundamentallymutable. Any party in possession of themachine or its flashmemory cards

or the tabulation system might be able to alter or destroy votes. What does it mean to recount votes

whose provenance cannot be proven?

e problem extends beyond ballots. It is common for  machines to keep an an event log to

support post facto analysis when the correct operation of the machines comes into question. ese

logs, which record and timestamp interesting events such as “election started” or “ballot cast,” can

provide critical clues to the events of election day, especially when the vote tally is unusual or incon-

clusive. at is, of course, unless they’ve been tampered with, in which case they prove nothing at

all.

What would be required for electronic voting machine event logs to serve as robust forensic

documents? ey must stand up to scrutiny during an audit, even under the assumption that the

votingmachinesmay have been tamperedwith, damaged, or lost at any point from theirmanufacture

until the last recount. Specifically, they should describe a provable timeline of valid events, including
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administrative steps and votes cast, transpiring on election day.

In this chapter I detail the design of Auditorium, a secure logging and networking facility that

I developed to address the problems of survivability and integrity in voting system audit logs. is

work is inspired by a unique opportunity that presented itself in : an invitation to investigate a

contested election.

3.2 March, 2006: Laredo, Webb County, Texas

e citizens of Webb County, voting in the  primary, were given the option to vote either on

paper (optical-scan) ballots or using the county’s new iVotronic touch-screen  systems, manu-

factured by Election Systems & Soware (). In this particular election, the second-place finisher

in a local judicial race found that he received a smaller share of the  vote than the paper vote, and

so contested the electronic election results. As a result, the machines used in the election were taken

into custody on orders of the judge in the case, who also permitted the challenger to find independent

voting security experts to help with the investigation.

Dan Wallach and I were contacted and made two trips to Laredo, the seat of Webb County, to

examine the impounded and impugned machines (which can be seen in Figure .). Although we

did not have access to source code (nor any form of assistance from ) we were able to examine

the machines themselves, the memory cards used to copy results from the machines to the tabulator

(a general-purpose computer running special soware), and the files output by that tabulator.

Such access, while not without precedent, was at the time still a rare opportunity for e-voting

researchers, who had theretofore had a rather hostile relationship with commercial voting system

vendors; in short, it was difficult to get access to voting systems to perform any kind of analysis. More

rare still was a situation in which analysis could be performed on voting systems that had recently

been used in an election under dispute; we were fortunate to be in a position to participate in this

“live fire” scenario. We submitted our final report [] to the court in May of that year.
A primary election is a pre-election nominating contest peculiar to the United States; voters of a particular political

party are given the opportunity to choose their candidate from a number of contenders of the same party.
e Ohio and California voting system reviews of  (see Chapter ) provided researchers with source code, tech-

nical documentation, and hardware access.
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Figure 3.1: Impounded voting machines in Laredo, TX. Approximately half of the  iVotronic
machines used in the Webb County primary election can be seen stacked outside the door to the
storage facility beneath the county courthouse; the rest of the machines were still inside, waiting to
be extricated for inspection. (Photo taken April , , : .)

3.2.1 Findings

We found no direct evidence of tampering in the  machines used in Webb County, nor did

we have the ability to examine their source code for faults. We did, however, discover anomalous

and incomplete information in the event logs kept by the iVotronic machines. ese logs, stored in

a proprietary format on the flash memory inside the voting machines, exist to provide some degree

of auditability aer the election is over. When the polls close, poll workers copy the contents of the

votingmachines onto CompactFlashmemory cards, which are then transferred to a general-purpose

 running the  tabulation soware. An example of the tabulator’s output, when given as input

one machine’s binary event log, is shown in Figure .. We examined both the text logs emitted by

the tabulation soware and the raw binary logs stored on the machines themselves.
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Votronic PEB# Type Date Time Event

5140052 161061 SUP 03/07/2006 15:29:03 01 Terminal clear and test
160980 SUP 03/07/2006 15:31:15 09 Terminal open

03/07/2006 15:34:47 13 Print zero tape
03/07/2006 15:36:36 13 Print zero tape

160999 SUP 03/07/2006 15:56:50 20 Normal ballot cast
03/07/2006 16:47:12 20 Normal ballot cast
03/07/2006 18:07:29 20 Normal ballot cast
03/07/2006 18:17:03 20 Normal ballot cast
03/07/2006 18:37:24 22 Super ballot cancel
03/07/2006 18:41:18 20 Normal ballot cast
03/07/2006 18:46:23 20 Normal ballot cast

160980 SUP 03/07/2006 19:07:14 10 Terminal close

Figure3.2: An iVotronic event log. emachine in question has the serial number ; several
different s (special administrative access tokens) were used over the course of the day. Notewor-
thy: the machine was cleared and entered into service at about :  on election day.

Lost votes

Figure . shows something unexpected. While polls opened for the primary election around  

on March , , this particular machine was cleared and entered into service at about :  that

same day. is could be entirely innocuous: perhaps this machine was simply unneeded until the

early aernoon, at which point poll workers activated it.

However, the machine might also have been accepting votes since   like the other machines

in that precinct, but was wiped clean in the aernoon. Because themachine is trusted to keep its own

audit and vote data—both of which can be erased or otherwise undetectably altered—we cannot be

sure that votes were not lost.

ere exists a procedure to mitigate against this sort of ambiguous vote record, albeit a fragile

one. Official election procedures direct poll workers to print a “zero tape” on each machine before it

is entered into service on election day, and a “results tape” once the polls are closed. Each tape reveals

(in addition to the election-specific, per-race tallies) the contents of the machine’s protected count, a

monotonic counter inside the machine that is incremented any time a ballot is cast and, according

to the manufacturer, cannot be decremented or reset even if the machine is cleared. is is a feature

first found on mechanical (lever-based) voting machines.
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It should therefore be possible (assuming the counter resists tampering) to compare the difference

in the count on the zero and result tapes and the number of ballots recorded on that machine in

between. If the numbers are not equal, votes cast on election day were lost, or votes cast on other

days are being treated as legitimate, or both.

Unfortunately, the system does not require that these tapes be printed, nor that they be properly

stored. In the case of machine , we were unable to locate a zero tape; the results tape showed

a protected count of , and we observed  votes in the final tally from that machine, so a maximum

of  votes were lost. It is quite possible that no votes were lost, and that the other  votes were votes

cast at other times for other purposes (e.g., other elections or tests). We cannot be sure, and had the

machine been in service for many years, its protected count would be much higher, correspondingly

inflating our best upper bound on the number of lost votes.

Other anomalies and ambiguities

We encountered several machines whose logs attest that votes were cast on those machines on or

before March , the day before the primary election. Some of these machines showed what appeared

to be a normal voting pattern, with the exception that every vote was cast on the th. Inspection of

those machines (an example is shown in Figure .) revealed that their hardware clocks were off by

one day, implying that the votes in question were in fact cast during the election on the th. We do

not know for sure; anyone with access to the machines prior to the election could have cast these

ballots illegitimately.

Other machines (e.g. Figure .) with votes cast on the wrong day fit a different pattern. In

each case, two votes were recorded: one ballot in the Republican primary election and one in the

Democrat primary. For each ballot, the particular candidates chosen were the same each time. We

learned that this is the profile of a machine under “logic and accuracy” test; election officials would

cast a couple of ballots and satisfy themselves that the machines were working. Somehow these test

votes were being counted in the official election tally.
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Votronic PEB# Type Date Time Event

5142523 161061 SUP 02/26/2006 19:07:05 01 Terminal clear and test
161115 SUP 03/06/2006 06:57:23 09 Terminal open

03/06/2006 07:01:47 13 Print zero tape
03/06/2006 07:03:41 13 Print zero tape

161109 SUP 03/06/2006 10:08:26 20 Normal ballot cast
03/06/2006 12:39:05 20 Normal ballot cast
03/06/2006 14:49:33 20 Normal ballot cast
03/06/2006 15:59:22 20 Normal ballot cast
03/06/2006 18:01:45 20 Normal ballot cast
03/06/2006 18:10:24 20 Normal ballot cast
03/06/2006 18:26:52 20 Normal ballot cast
03/06/2006 18:29:18 20 Normal ballot cast
03/06/2006 18:39:41 20 Normal ballot cast
03/06/2006 18:44:24 20 Normal ballot cast

161115 SUP 03/06/2006 19:29:00 27 Override
03/06/2006 19:29:00 10 Terminal close

Figure 3.3: Machine showing the wrong date. ese votes appear to be cast on the day before
the election; when we inspected the machine we found that its hardware clock was off by one day,
implying that these are likely to be valid election-day votes.

Votronic PEB# Type Date Time Event

5145172 161061 SUP 03/06/2006 15:04:09 01 Terminal clear and test
161126 SUP 03/06/2006 15:19:34 09 Terminal open
160973 SUP 03/06/2006 15:26:59 20 Normal ballot cast

03/06/2006 15:30:39 20 Normal ballot cast
161126 SUP 03/06/2006 15:38:37 27 Override

03/06/2006 15:38:37 10 Terminal close

Figure 3.4: Likely test votes. is machine also shows votes cast on March , the day before the
election. When we inspected this machine, however, its hardware clock was set to the correct date.

Adminstrative and procedural mistakes

We also saw evidence of procedural failures which call into question the accuracy of the vote tally.

In Figure ., the event described as Super ballot cancel represents a situation where a “supervisor”

(poll worker) had to abort an in-progress voting session. is typically happens when voters “flee,”

that is, they leave the polling place without completing a ballot. In this event, poll workers are under

instruction to cancel the incomplete ballot and to record on a paper log the reasons for having done so.
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ese paper logs were rarely kept in this particular primary election, so we have no way to confirm

the legitimacy of the cancellation. (It is not possible to cancel a vote aer it has been successfully

cast.)

We conclude from these experiences that electronic voting systems generate a great deal of audit-

ing data that can shed light on irregular results. Because the data for the entire county was available

in digital form, we were able to analyze a large amount of election auditing data at great speed, a

feat that would have been far more difficult if we relied on paper records kept in each precinct by

poll workers. Despite their usefulness, however, we are still able to prove neither the accuracy nor

completeness of these event logs.

3.3 The design of Auditorium

3.3.1 Requirements for auditable voting systems

e first step in designing a voting system which survives mistakes and failures to provide an un-

ambiguous result is to formalize the required properties of such a system. In an auditable voting

system:

RÛ Each machine must be able to account for every vote. Any ballot to be included in the final

tallymust be legitimate; that is, it must provably have been cast while the polls were open. Itmust also

be possible to prove, by examining the auditing records, that no legitimate votes have been omitted

from the tally. is property should extend beyond votes to other important events, such as ballot

cancellation.

Rƹ A machine’s audit data and cast ballots must survive that machine’s failure. e overall

system must defend against the loss of critical election data due to malfunction, loss, destruction, or

tampering with individual machines.

R1 and R2 are sufficient to detect and recover from the procedural errors that were observed in

Laredo and that can cast doubt upon even legitimate election results. e next section describes the

way Auditorium meets these challenges.
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3.3.2 How I learned to stop worrying and love the network

e solution presented here to the problems of resilient, believable audit records revolves around

the idea that auditability can be enhanced by connecting voting machines to one another. e

general idea of networking the polling place is not original; some electronic voting systems (the Hart

InterCivic eSlate, for one) already support the use of a network. However, the elections community

has historically been very suspicious of networks, and with good reason: any unjustified increase in

the potential attack surface of a voting machine is inexcusable.

A network couldmake possible two kinds of previously-infeasible attacks: votingmachines could

be attacked from outside the polling place, and a single compromised votingmachine can now attack

others from the inside. If a polling place is networked, it must not be reachable from the Internet,

obviating an outside attack. Such an “air gap” is already an important part of military computer

security practices and is sensible for electronic voting.

e “inside attack” is an interesting case. An attacker needs physical access to only one machine

(perhaps the one on which the attacker is voting) in order to install malicious code, which can then

spread via the network. Note that the network is not necessary for this kind of attack. One of the

chief features of  voting machines is the speed with which they may be tallied; this speed comes

from some sort of communication between machines, whether in the form of a network or simply

exchanged memory cards. e Diebold AccuVote-TS system uses flash memory cards for this pur-

pose and Feldman et al. [] found that this card-swapping was an effective way to spread a “voting

machine virus.” Yasinsac et al. [] found a similar vulnerability with the  system. In the end,

the lack of a network does not guarantee isolation of any faulty or malicious voting machine.

It is true that a networked voting system is strictlymore vulnerable than one that does not have a

network, by virtue of the additional complexity and potential ingress points it creates. e following

sections detail the security properties that justify this additional risk.

3.3.3 Secure logging

I now build up a design for an auditable voting system from essential building blocks, of which the

first is secure logging. e requirement R1 would be satisfied by a voting machine able to produce a
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tamper-evident record of ballots cast and other pertinent events. A first step is a secure log, such as

those described by Bellare and Yee [] and Schneier and Kelsey []. Each event in a secure log is

encrypted with a key that is thrown away so that, if attackers gain control of a machine, they should

be unable to read log messages written in the past (that is, before the attack). Encryption keys are

generated deterministically from one another, starting with an initial key that is retained by a trusted

party. To read the logs, the sequence of keys can be re-generated, and log entries decrypted, given

the initial key.

e inability of untrusted parties to read previous log entries, termed perfect forward secrecy, is

not necessary for electronic voting, where the pertinent data is a public record. Instead, the record

needs forward integrity [], the property that an attacker may not undetectably remove, add to, or

alter auditing records committed before the attack. is can be achieved with hash chaining. Each

event Ei includes hash(Ei−1), the result of a collision-resistant cryptographic hash function applied

to the contents of the previous event.

If the contents of Ei−1 are hard to predict (for example, it includes a nonce: a random ephemeral

value), the time at which Ei was committed to the log is now backward-constrained: it must succeed

the time of Ei−1. When event Ei+1 in turn incorporates the hash of event Ei, Ei is now forward-

constrained as well. us, each eventEi, containing log data di, has the form [di, nonce, hash(Ei−1)].

(Naturally, there must exist a special event E0 from which the first real event E1 derives; it can be

defined as a well-known arbitrary value, such as a string of zeros of appropriate length.)

3.3.4 Entangled timelines

Moving beyond the realm of a node’s own timeline, let us now consider ways to reason about mul-

tiple timelines in a distributed system (such as a polling place). e concept of fixing events from

foreign, untrusted timelines in the reference frame of local events originates in the logical clocks of

Lamport []. Maniatis and Baker make this scheme tamper-proof by fusing it with hash-chaining

to form what they call “timeline entanglement” []. An entangled timeline is a secure log which

includes, among the links in its hash chain, events from the secure logs of other (possibly untrusted)

parties. Alice might, for example, send an event to Bob, who can now mix that information into his
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Figure 3.5: Flow of time in the Auditorium. Participants A, B, and C experience a shared flow of
time (a). Solid arrows denote direct temporal precedence; for example, X← Y illustrates an event Y
that incorporates hash(X), proving that event X must precede event Y in time. e abstraction of
a shared timeline is achieved by replicating local events to remote nodes (b); dotted lines represent
Auditorium broadcasts.

next event. Now Bob can prove to Alice that his event succeeds hers in time.

Much like including a copy of today’s newspaper in a photograph to fix it in time for any skeptical

auditor, entangled timelines allow parties to fix the events of others in their own timelines. By follow-

ing links of hash chains to and from a foreign event in question, a node should be able to eventually

reach events in its own timeline that provably precede and succeed it.

3.3.5 Auditorium: n-way entanglement and replication

With entangled timelines, the system is able to satisfy requirement R1 without the need of either a

trusted auditor holding a base key or a trusted timestamping service. e burden of R2, however,

remains unmet; the system can detect erasure, but not recover the records.

To this brew of concepts I therefore add insight from peer-to-peer research: in a world where

disk and network are cheap and abundant, one has the luxury of widespread replication. While

debate continues as to whether these criteria hold in the wider Internet, I argue that it is certainly

true for electronic voting: even the low-end computers used in s are overprovisioned for the task

of voting.

I introduce a simplification of the entangled timeline scheme that is practical for small networks

such as a group of voting machines in a polling place. Rather than periodically exchanging a fraction

of their events along with hash-chain precedence proofs (as in Maniatis and Baker), nodes in this
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system will broadcast every state change that one will ever want to reason about or recover. is

composition of techniques forms the kernel of the system, called Auditorium: Every event is heard

and recorded by every participant, and each new event is entangled with events from the past. e

resulting abstraction—a single shared and tamper-evident record of time—is illustrated in Figure ..

Every event is cryptographically signed by its originator to prevent forgery. e use of signa-

tures in conjunction with entanglement prevents later repudiation of events, or even repudiation

of the time at which those events occurred. A log entry Ei from node A therefore has the form

A.sign([di, nonce, hash(Ei−1)]), where A.sign(X) denotes X signed with A’s public key.

As a part of the simplification, Auditorium foregoes themultiple-phase protocol used byManiatis

and Baker to exchange precedence proofs; the result is that the shared timeline may naturally diverge

due to asynchrony. For example, Bob and Charlie may both publish events including a hash of Alice’s

last message. ese two events are contemporaneous; that is, they cannot be distinguished in time

because they directly succeed the same event. If Alice wants to broadcast another event, she has

a choice: should her event include the hash of Bob’s event or Charlie’s? She must choose both in

order to forward-constrain both events in time. erefore, her message should merge the timelines

by including the hash of any prior event not already constrained. An event Ei may therefore include

the hashes of any number of prior unconstrained events:

Ei = A.sign([di, nonce, [hash(Ej), hash(Ek), . . . ]])

3.3.6 The Auditorium broadcast network

To create the abstraction of a broadcast channel, the implementation of Auditorium used in the

VB prototype voting system uses a fully-connected network of point-to-point  sockets.

Every participating node in a network of size n is connected to every other, resulting in a complete

graph (Kn) of connections. Any new message generated by a participant should be sent on every

open connection. To illustrate: if Alice, Bob and Charlie comprise an Auditorium instance and Alice

wishes to announce an event to the Auditorium, she sends her message to Bob and Charlie.

Furthermore, nodes should exchange messages according to an epidemic or gossip protocol; any
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node receiving a “new” event (one whose hash it has never before seen) should forward it to every

other participant. In the above example, Bob and Charlie would each forward the new event to the

other; upon receiving what is now an “old” event, no more forwarding would take place.

Such a network, quadratic in the number of open connections, is hardly the only way Auditorium

could have provided the broadcast abstraction, and is certainly not themost scalable. For the problem

of voting, however, the number of nodes involved is quite small (see Section .). is mechanism is

extremely robust and simple to implement; no complex tree-construction algorithms ormaintenance

operations are required; every node is simply connected to every other, and shares newmessages with

them all.

Because new messages are flooded on every link, nodes hear about the same message from ev-

ery other node in the system. is flurry of seemingly-redundant traffic has the extremely valuable

benefit of providing robustness to Byzantine faults in timeline entanglement []; a node might at-

tempt to reveal divergent timelines to different neighbors, but in the Auditorium this duplicity will

be quickly exposed as conflicting messages are exchanged among their recipients.

Perhaps most importantly, the extreme redundancy inherent in this design provides a believable

account of the entire election, including sufficient information to authenticate and tally each ballot,

even if n − 1 nodes fail aer election day. is is a distinct possibility given that n may be as small

as . Many jurisdictions that use paper ballots, for example, will require precincts to maintain one

 for accessibility reasons. If this one  were a VB, when combined with its supervisor

console, it forms an Auditorium network of . In a larger precinct, tolerating n − 1 failures is still

important, given that an insider may attempt to modify or destroy one or more machines aer the

election. With Auditorium as described, just one honest VB is all that is needed to act as a

“whistleblower” and recover all the true votes from election day. (To know which machine to trust,

an auditor must rely on the true polls-closed hash from the end of the election; see Section ...)

To see how effective this approach is, consider the broader design space in which each VB

trades off some amount of robustness to reduce the bandwidth demands of the system. Figure .

shows simulation runs using a synthetic election-dayworkload (describedmore fully in Section ..).

e number of replicas r (redundant machines to which any given message is sent) varies from 1 (no
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Figure 3.6: Data survival under various replication factors. As the number of “failed” machines
(either totally destroyed or compromised in some way as to cast doubt on the integrity of its data)
increases, the number of Auditorium messages that can be recovered from the remaining machines
decreases. Data loss is mitigated by adding replicas; with  replicas, even a loss of  nodes can be
completely tolerated. (e -replica line does indeed nudge downward slightly in the -failures case;
this is due to initial bootstrapping messages that were never heard by the remaining replica.)

replication: each machine keeps its own logs) to n (the Auditorium full replication strategy). Points

are the average of three runs with different random choices of which r machines to replicate with

for each message, and which f machines are chosen to fail. As expected, only with full replication

(r = n) can the system tolerate many failures without loss.

3.3.7 Voting in the Auditorium

As I have described it thus far, Auditorium is a general-purpose auditable group communication

system; a specific protocol must now be specified for holding an auditable election inside the Audito-

rium. e next several sections describe the voting protocol in detail; a complete list of Auditorium
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messages involved can be found in Appendix A.

Bootstrapping

Each polling place will receive a number of voting machines (VB “booths,” hereaer simply

referred to simply as VBes) using the Auditorium system, as well as at least one supervisor ma-

chine running a special election-control application. Figure . illustrates this polling place concept.

eVBes have identical soware configurations; they differ only in their unique identifiers

(assigned by the manufacturer) and in their cryptographic keys. Each public key is encapsulated into

a certificate signed by a trusted certificate authority (held, for example, by the administrator in charge

of elections). e corresponding private key is used for signingmessages in the Auditorium protocol.

Similar properties hold for supervisor machines; spares of each may be kept (in storage or active and

on the network) to be brought into service at any time.

On election day, the machines are connected to power and the network and then booted. All

nodes (machines and supervisor) are on the same network segment, and so can use broadcast packets

to discover the presence of other nodes, self-select  addresses, and so on. A just-started VB

uses an untrusted broadcast message to discover other nodes, and then opens a  connection to

one or more of them in order to join the network.

e joining process is a specific case of a general fixed-point algorithm to merge two fully-

connected networks. Given a node A wishing to join its network to the network of node B:

. A connects to machine B (on a well-known port).

. B sends A a join message, which includes its unique identifier, its public key certificate, and

the set of nodes ( addresses and identifiers) B knows about.

. Satisfied (based on the signature on B’s certificate) that B is a valid voting machine, A sends

its own join message to B.

. At this point the network is now connected, but not fully. To finish connecting the network, A

and B may now consult the list of nodes each received from the other, and initiate connections

to any previously-unknown nodes. e bootstrapping process repeats on each such new link.
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Because the set of nodes is finite, the bootstrapping process will terminate when the network settles

into a fully-connected steady state. In the case of a single node A joining a network that is already

fully connected, this algorithm will halt aer n rounds (A will make one connection to B and then

one to each of its neighbors).

join messages sent during bootstrapping are the only Auditorium messages that are not broad-

cast. Once a node has joined the network, it is responsible for broadcasting any new message it

originates, as well as re-broadcasting messages it has never seen before, according to the simplistic

gossip protocol described in Section ... e full set of messages involved in this process can be

found in Appendix A.

Opening the polls and authorizing ballots

When the election is to begin, the supervisor announces a polls-open message. At this point the

polling place is ready to accept votes. Once a voter has signed in with poll workers, the poll workers

in turn use the supervisor’s user interface to authorize a particular VB terminal to present the

correct ballot for the voter. is is done with an authorized-to-cast message, which includes the

ballot definition for that voter’s precinct, a nonce, and the  of the particular VB the voter

is to use. (Poll workers will then direct the voter to the correct machine.) All of these messages are

broadcast to and recorded by every other VB.

Casting and cancelling ballots

e VB uses the ballot definition inside the authorization message to present a voting inter-

face to the voter. When the voter has finished making selections and presses the final “cast ballot”

button in the , the VB announces a cast-ballot message, which contains the original au-

thorization nonce for that ballot as well as an encrypted cast ballot containing the voter’s selections.

Ballot encryption is discussed further in Section ...

Between the authorized-to-cast and cast-ballotmessages, the votingmachine is trusted to faith-

fully capture and record the voter’s selections. Of course, faulty soware might well tamper with or

corrupt the vote before it is broadcast; see Section .. for more on this problem and Chapter  for
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Figure 3.7: Configuration ofmachines in a polling place. A number of VBes are connected
to one another and to a supervisor machine by the Auditorium broadcast network. A redundant
supervisor is also present on the network in case the primary supervisor fails; similarly, VBes
may be swapped out at any time.

VB’s solution.

In order to provide meaningful feedback to the voter that his ballot has been successfully cast,

anothermessage is introduced. e supervisor will acknowledge the receipt of a legitimate encrypted

cast ballot by announcing a received-ballotmessage including the appropriate authorization nonce.

is has several benefits: it allows the voting machine to display a confirmation message to the user;

it de-authorizes the nonce, ensuring it cannot be used again to cast a legitimate ballot; and it tightly

constrains the cast ballot in time by entangling the cast-ballotmessagewith one from the supervisor’s

timeline.

If the voter flees (that is, decides to leave without casting a ballot), the appropriate proceduremay

be for a poll worker to cancel that outstanding ballot using the supervisor. e supervisor will then

announce a cancelled-ballot message, which contains the nonce of the authorization to be revoked.

No subsequent cast-ballotmessage corresponding to the authorization (viz., including its nonce)will

be considered legitimate. Likewise, the supervisor will never send an authorized-to-castmessage for

amachine with an outstanding authorization; the previous ballotmust first be either cast or cancelled

before a new one can be authorized.
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Ballot storage and encryption

Cast ballots are part of the Auditorium event timeline, and so their order can by definition be recon-

structed. is clearly poses a tradeoff with the anonymity of the voter; in general, perfect anonymity

tends to stand in the way of auditing. Auditorium mitigates this particular threat to anonymity by

sealing the contents of cast ballots. VB machines use public-key cryptography to control ac-

cess to the plaintext of each ballot. Each ballot is encrypted using the well-known public key for the

election, distributed to all VBes in advance. e corresponding private key is retained by the

official(s) trusted to count the votes, typically administrators at the local or state level. No attacker

in possession of the Auditorium logs—perhaps a network eavesdropper, or a malicious party in pos-

session of a VB aer election day—can recover any votes, even though all votes are dutifully

logged by every VB in the polling place. Chapter  explores the cryptography of VB in

greater detail.

Some jurisdictions require each polling place to produce its own legible election results once the

polls close, forcing the design to accommodate decryption in the polling place. is necessitates

storing sensitive private key material on supervisor machines so that totals may be computed by

poll workers. Precincts may also be required to produce a full paper record of each cast ballot. In

this case, officials must of course be careful not to print those ballots themselves in the order they

were found in the log, thereby compromising the anonymity of the votes. A straightforward way to

deterministically erase the order of the ballots is to sort them lexicographically [], although this

still requires trust in the supervisor to perform the sort.

By contrast,Molnar et al. [] use a dedicatedwrite-only hardware device to store plaintext ballots

in such a way that their order is destroyed (thus preserving anonymity) and that tampering with

the finalized vote record is evident. Similarly, history-hiding append-only signatures—as proposed

recently by Bethencourt et al. []—are soware-only cryptographic functions that accomplish the

same task. Unfortunately, the history-hiding properties of these ballot storage techniques conflict

with the auditability goals stated here. Ballots that should not be counted (e.g., because they were cast

on the wrong day) would be scrubbed of their context and become indistinguishable from legitimate

votes. eAuditorium, based as it is on secure timelines, intentionally preserves voting history, giving
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auditors enough information to establish the validity of each vote if necessary.

Heartbeats; closing the polls

It’s possible that a quiescent polling place will go a long time (minutes or even hours) between legiti-

mate election events. is will result in a loss of temporal resolution when later examining the audit

logs; to address this, the supervisor will send periodic heartbeat messages to help fix surrounding

events in wall-clock time. VoteBoxes also send heartbeat messages that include additional state,

such as the battery level and the protected count. If a VB observes that one of its open 

connections has been reset, it announces a disappearedmessage to document the loss of connectiv-

ity to the peer at the other end of the socket. All of these messages aid auditors who might be trying

to reconstruct the state of the polling place at any given time during the day.

When it is time to close the polls, the poll worker instructs the supervisor to wait until there are

no further outstanding ballots before broadcasting a polls-closed message. is establishes an end

to legitimate voting, and places each VB in its post-election shutdown mode.

3.4 Robustness to failure and attack

eAuditoriumdesignwas prompted by irregularities and ambiguities encountered in a real election,

as described in Section .. is section catalogs the possible causes, both benign and malicious, of

those problems and show how the Auditorium can detect, record, and recover from them.

3.4.1 Failures and mistakes (and attacks masquerading as such)

Early machine exit. Scenario: A VB suddenly departs the Auditorium network. e machine

may be inoperable and any storage lost. Response: All ballots cast from the failed machine are repli-

cated on other VBes and on the supervisor; they can be counted as part of the final tally. Note

also that because VBes are interchangeable, a machinemay be brought in from storage or from

another precinct to replace the failed machine.

Late machine entry. Scenario: A VB enters the Auditorium aer the election has started;

it claims to have recorded no votes. (See Figure . for a real-life example.) Possible causes: () A
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machine was brought on-line during the day to assist additional voters or to replace a failedmachine.

() A machine was erased, possibly by accident, destroying legitimate votes cast earlier in the day.

Response: Auditors can look at the logs of otherVBes andof the supervisor to see if themachine

in question cast any votes earlier in the day. Any such votes can be safely counted in the final tally, and

the cause of the machine’s erasure investigated aer the election. Any new votes cast by the machine

aer joining will be recorded as normal.

Machine re-entry. Scenario: A VB leaves the network and re-enters it some time later.

Possible causes: Machine crash; temporary isolated power or network interruption. Response: e

response is identical to that for early machine exit and late machine entry. e logs held by the su-

pervisor and other VBes regarding the previous activity of the re-enteredmachine are tamper-

evident. e log on the machine in question may have missed messages during its downtime and

thus may have a gap, but it will quickly re-join the global entanglement and continue to participate

in voting.

Extraneous cast ballots. Scenario: A VB appears to have votes cast on the wrong day.

Possible causes: () Clock set wrong. () Test votes accidentally considered as possible real votes. ()

Intentional, malicious attempt to subvert the correct tally by stuffing the ballot box with illegitimate

votes before or aer the election. Response: For (), if the votes are valid, their local (erroneous)

timestamps are irrelevant; they will be provable successors to the polls-open event and predecessors

of the polls-closed event. e situations () and (), based on the definition in Section .. of

legitimate votes, will be detected when the logs are analyzed. A vote cast outside of the temporal

bounds of the election (e.g. a test vote or a stuffed ballot) will have no provable link to the entangled

timeline, nor will it succeed a valid authorized-to-cast message, so it will be considered illegal.

Electrical failure. Scenario: Electricity fails at the polling place. Response: is is a known prob-

lemwith electronic votingmachines of any sort. Mostmodern s have battery backups; there is no

reason the supervisor and network switch can not also be backed up in this way (perhaps as simply

as plugging them into a ). Battery status is part of the heartbeat message, so the supervisor can

display the status of each VB.
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3.4.2 Mega attacks

I now present a class of possible (if implausible) threats to election integrity, which I refer to as “mega

attacks.” ese require either widespread collusion or overwhelming force in order to execute, but

the risk—attackers able to exert total control over the outcome of an election—is just as extreme.

Most voting systems, electronic or otherwise, are vulnerable to such attacks; the goal for voting in

the Auditorium is to be able to recover from these attacks where possible, and to detect them in any

case.

Switched results. Scenario: Parties in possession of all election equipment the night before

the election (a so-called “sleepover”) use the hardware to conduct a secret election with a chosen

outcome. On election day, voters cast ballots as normal, but the attackers substitute the results of the

secret election (including cast ballots and entangled logs) when the polls are closed. Response: is

attack is equally effective against paper ballots, and should be addressed with human procedures.

For example, no single party should be allowed unsupervised custody of the machines to be used on

election day. Alternatively, distribution of supervisors should be delayed until election morning.

e properties of the Auditorium allow this attack to be detected. On the morning of the elec-

tion, the election administrator can distribute to each polling place a nonce to be input into each

supervisor. is nonce, hard to guess but easy to input, might take the form of a few English words.

e supervisor would require the user to input the nonce before opening the polls; the nonce would

then be embedded in the polls-open message. Any audit can examine the polls-open message to

see if the nonce is correct (modulo minor keying errors by the poll workers). A sleepover conspiracy

would be unable to guess the correct nonce to inject into their polls-open message, and thus the

Auditorium record of their secret election will be detectably invalid.

A similar defense will thwart attackers who run a secret election and switch the results aer elec-

tion day. is is accomplished by immediately publishing the hash value of thepolls-closedmessage.

Copies may go to election observers, newspapers, and so forth. is effectively seals the results of

the legitimate election, making it impossible to substitute new results later.

Shadowelection. Scenario: Similar to the switched-results attack, a conspiracy of electionwork-

ers substitutes false election results for the real ones. Instead of conducting the election the night
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before, they conduct the secret election on election day as a “shadow” of the real one, so they have

access to any “launch code” nonces used to validate the date and time of the election. At the end of

the election, they report the polls-closed message from their shadow election. Response: In order

to conduct a shadow election, the attackers will need to duplicate the entire voting apparatus, down

to the private keys used by each VB to sign messages. (Creating new keypairs won’t work; the

correct keys are enclosed in certificates signed by election officials.) Making this duplication difficult

requires hardware-based protection schemes, such as trusted platform module () chips which

resist extraction of key material.

Booth capture. Scenario: Armed attackers take control of the polling place by force and stuff

ballots until the police arrive. Response: Western readers may find this attack implausible, but such

events are not uncommon infledgling democracies andhave occurred in India as recently as  [].

Attackers have two potential goals: () cast fraudulent ballots; () destroy legitimate ballots. e dan-

ger of () is mitigated by estimating when the attack took place (perhaps by allowing poll workers to

broadcast an “election compromised” Auditorium message, rather like an alarm button at a bank)

and discarding votes cast aer that point.

In the case of (), auditors can recover votes from any machine not destroyed, but they cannot

recover from complete destruction of the polling place. e only defense would be a network link to

an offsite location (over which Auditorium messages would be broadcast, just as within the polling

place). Removing the air-gap between the precinct network and the “outside world,” would greatly

increase the attack surface of the polling place, thereby introducing unacceptable risk.

In either case, this attack is trivially detectable, if not always recoverable.

3.4.3 Software tampering

Finally I consider soware tampering, a critical issue with any form of electronic voting. While the

Auditorium focuses on issues of auditability arising when correct voting systems fail or are used

incorrectly, any reasonable threat model for electronic voting includes the introduction of malicious

code into the overall system.

e design of Auditorium makes it very hard for a malicious voting machine to corrupt the en-
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tangled record once it has been committed. Hash chaining prevents insertion of spurious events;

digital signatures prevent forgery. Digital signatures also allow VBes to unambiguously iden-

tify the source of each message, so a node wishing to deny service by, for example, filling up the disks

of its peers with junk messages can be effectively ignored by other nodes. As shown in Section ..,

the gossip protocol of the Auditorium makes it impossible for a malicious node to maintain multi-

ple divergent timelines without being detected. Any of the above events or other unusual activity, if

found in the audit logs, will necessitate impounding and further investigation of the equipment used

in the election.

Malicious soware on a single VB would not be able to cast unattended votes without a

corrupt supervisor, as only the supervisor can generate the necessary authorized-to-castmessage.

However, the VB could easily show the voter his or her correct selection while quietly casting a

vote for somebody else. is is the cast as intended property, identified in Chapter  as extremely hard

for a  to verifiably satisfy. Addressing this fundamental problem requires mechanisms beyond

the Auditorium; such techniques are the subject of the following chapter.



CHAPTER 4

VERIF IABIL ITY:
THE CAST-AS- INTENDED CHALLENGE

4.1 Introduction

With Auditorium, auditors of a contested election have a powerful tool that provides conclusive evi-

dence about the legitimacy of a particular ballot. e assumption, however, is that that ballot—when

introduced into the Auditorium network and logs by a VB under the control of a voter—is ini-

tially correct. While it is essential to defend against tampering with (or destroying) election records,

a  must be trusted to faithfully capture the voter’s intent when creating those records in the first

place.

is is the heart of the cast as intended property, introduced in Chapter , required of any voting

system that is to be considered verifiable. VB must somehow prove to the voter that the ballot

recorded for counting is the ballot created and reviewed for correctness by the voter.

In this chapter I describe a novel application of a cryptographic approach to voting pioneered by

Benaloh []. is technique allows VB to satisfy this stringent verifiability property; when

used in concert with Auditorium, the technique becomes more practical for those wishing to verify a

VB. e cryptography used here also offers greater protection for the voter’s privacy than the

Auditorium system can provide on its own.
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4.2 Voter privacy; encryption

eprivacy (or,more specifically, anonymity) of a voter is an essential ingredient in any voting system;

without privacy, a voter can be coerced or bribed to vote in some particular way. A voting system

that safeguards the voter’s anonymity prevents him from proving how he voted to anyone (or, put

another way, allows him to claim with equal believability any particular vote).

e Auditorium log does not obviously violate this anonymity property: nowhere in the record

is the voter’s name or any other identifying information associated with each ballot. However, by

design it contains a strong proof of order of election events, and this includes the ballots themselves.

is ordering can in fact be used to expose the identity of the voter. An attacker with access to

chronologically-ordered lists of both the ballots and the voters in a particular polling place can es-

tablish with some probability a mapping from voter to ballot.

Two classes of approaches exist to prevent this compromise of voter anonymity:

. e order of the ballots may be destroyed, for example, by shuffling them. 

. e contents of the ballots may be concealed, for example, by encrypting them.

Shuffling ballots is problematic because the “shuffled” ordermay not be random at all; amalicious

voting machine could choose a null shuffle (that is, preserving exactly the original order) or could

even encode information in the particular shuffle it chooses. It has been noted by Benaloh [] that

lexicographic ordering of ballots is an effective way to destroy order without opening these covert

channels. Because there is only one sorted order, a voting machine is not free to choose a convenient

ordering.

In the context of VB, however, ballot re-ordering presents another problem. If ballot plain-

texts are excised from the (provably-ordered) Auditorium log, their validity (per the requirements

of Section ..) can no longer be conclusively established. A two-part auditing record—one that

contains the order of ballots but not their contents, and a second that contains the contents of ballots

in an arbitrary non-chronological order—might allow an auditor to discover whether any ballots ex-
Note that we cannot similarly destroy the order of the voters; an attacker can wait outside a polling place, recording

in order the identities of voters as they leave.
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ist in the record that should not be counted (because they occurred outside the time bounds of the

election, for example), but not which ballots should be disqualified.

is brings us to the second technique: ballot encryption. By including in the Auditorium log

the ciphertext of a ballot, we prevent anyone with access to that log from matching ballot plaintexts

with voters. It is natural to choose a public-key cryptosystem here, as there are many writers of sensi-

tive information (each VB, creating encrypted ballots) and few readers (the elections officials

responsible for counting the ballots). A straightforward implementation would use a single keypair,

retaining the private portion for officials and distributing the public key to every voting machine.

4.3 Tallying encrypted ballots

ere is, however, a problem with this approach. Counting ballots naturally requires that they be

decrypted. is means that the elections officials will at some point during the tallying process see

the decrypted ballots in order. It also means that jurisdictions that legally require each precinct to

immediately post the tally of all votes cast in its polling place can no longer do so; alternatively, such

precincts must each have a copy of the private decryption key, dramatically widening the circle of

trusted parties.

Mixnet-based cryptographic voting systems [, , , ] address this problemby combining the

re-ordering and encryption techniques described in the previous section. Each stage of a verifiable

re-encryption mixnet reorders and partially decrypts its inputs in such a way as to prove that the

output set is equivalent (although its order is randomized). Ballots, which enter the mix in order

but encrypted, exit in cleartext but also in some other order; this allows them to be tallied without

exposing the original order (and hence the voter’s identity).

VB uses a different approach, called homomorphic encryption, to solve the problem of tal-

lying votes without decrypting them in order. is choice is partially to avoid some of the techni-

cal problems that plague mixnet designs (including establishing and coordinating the stages of the

mixnet among multiple parties); moreover, the homomorphic scheme permits application of a ver-

ification mechanism proposed by Benaloh [] that allows voters to verify the correct operation of

VB on election day.
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4.3.1 Ballots as counter vectors

Webegin by encoding a cast ballot as ann-tuple of integers, each of which can be  or . Each element

of the n-tuple represents a single choice a voter can make, n is the number of choices, and a value of

 encodes a vote for the choice while  encodes a vote against the choice. (In the case of propositions,

both “yes” and “no” each appear as a single “choice,” and in the case of candidates, each candidate is a

single “choice.”) e cast ballot structure needs not be organized into races or contests; it is simply an

opaque list of choice values. We define each element as an integer (rather than a bit) so that ballots

can be homomorphically combined. at is, ballots A = (a0, a1, . . .) and B = (b0, b1, . . .) can be

summed together to produce a third ballot S = (a0 + b0, a1 + b1, . . .), whose elements are the total

number of votes for each choice.

4.3.2 Homomorphic encryption of counters

VB uses an El Gamal variant that is additively homomorphic to encrypt ballots before they are

cast. Each element of the tuple is independently encrypted. e encryption and decryption functions

are defined as follows:

E(c, r, ga) = ⟨gr, (ga)rf c⟩ (.)

D(⟨gr, garf c⟩, a) =
garf c

(gr)a (.)

D(⟨gr, garf c⟩, r) =
garf c

(ga)r (.)

where f and g are group generators, c is the plaintext counter, r is randomly generated at encryption

time, a is the decryption key, and ga is the public encryption key. To decrypt, a party needs either

a or r in order to construct gar . (gr, which is given as the first element of the cipher tuple, can be

raised to a, or ga, which is the public encryption key, can be raised to r.) Aer constructing gar, the

decrypting party should divide the second element of the cipher tuple by this value, resulting in f c.

To recover the counter’s actual value c, we must invert the discrete logarithm f c, which of course
While this simple counter-based ballot does not accommodate write-in votes, homomorphic schemes exist that allow

more flexible ballot designs, including write-ins [].
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is difficult. As is conventional in such a situation, we accelerate this task by precomputing a reverse

mapping of fx → x for 0 < x ≤M (for some large M ) so that for expected integral values of c the

search takes constant time. (We fall back to a linear search, starting at M +1, if c is not in the table.)

We now show that our encryption function is additively homomorphic by showing that when

two ciphers are multiplied, their corresponding counters are added:

E(c1, r1)⊙ E(c2, r2) = ⟨gr1 , gar1f c1⟩ ⊙ ⟨gr2 , gar2f c2⟩ (.)

= ⟨gr1+r2 , ga(r1+r2)f c1+c2⟩ (.)

is cryptosystem allows an election’s results to be computed by multiplying ciphertexts to arrive

at an encrypted tally, then decrypting it. (Subtleties that must be addressed to maintain the security

of the approach are described in Section ..) In the following section I show how this cryptosystem

may also be used to arrive at a powerful result: the elusive cast as intended property of verifiable

voting systems.

4.4 Verifiability through ballot challenge

4.4.1 Immediate ballot challenge

To allow the voter to verify that her ballot was cast as intended, we need some way to prove to the

voter that the encrypted ballot published in the Auditorium log represents the choices she actually

made. Aer all, a  can by definition alter the contents of a ballot at any time, particularly before

that ballot is ever entered in a secure log or broadcast over Auditorium (which would in this case

faithfully replicate the wrong information).

VB’s solution to the cast-as-intended problem, here termed “immediate ballot challenge,”

an adaptation of a technique due originally to Benaloh []. It is a probabilistic voter-initiated audit-

ing technique, allowing any voter to challenge the voting machine to prove that it is casting ballots

faithfully and correctly. Of course, because these challenges generally force the voting machine to

reveal information that would compromise the anonymity of the voter, challenged ballots must be

discarded and not counted in the election. Note that by using what appears in every way to be a real
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Figure 4.1: Challenge flow chart. As the voter advances past the review screen to the final con-
firmation screen, VB commits to the state of the ballot by encrypting and publishing it. A
challenger, having received this commitment (the encrypted ballot) out-of-band (see Figure .),
can now invoke the “challenge” function on the VB, compelling it to reveal the contents of the
same encrypted ballot. (A voter will instead simply choose “cast”.)

ballot for this challenge, the auditor avoids artificial testing conditions (such as are common in “logic

and accuracy tests”) that can usually be detected by a voting machine. With the challenge system, a

malicious voting system now has no knowledge of which ballots will be challenged, so it must either

cast them all correctly or risk being caught if it misbehaves.

Our implementation of this idea is as follows. Before a voter has committed to her vote, in most

systems, she is presented with a final confirmation page which offers two options: () go back and

change selections, or () commit the vote. Our system, like Benaloh’s, adds one more page at the

end, giving the voter the opportunity to challenge or cast a vote. At this point, Benaloh prints a paper

commitment to the vote. VBwill similarly encrypt and publish the cast ballot before displaying

this final “challenge or cast” screen. If the voter chooses to cast her vote, VB simply logs this

choice and behaves as one would expect, but if the voter, instead, chooses to challenge VB,

it will publish the value for r that it passed to the encryption function (defined in Equation .)

when it encrypted the ballot in question. Using Equation . and this provided value of r, any party

(including the voter) can decrypt and verify the contents of the ballotwithout knowing the decryption

key. An illustration of this sequence of events is in Figure ..

In order to make this process immediate, we need a way for voters (or voter advocates) to safely

observe Auditorium traffic and capture their own copy of the log. It is only then that the voter will
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Figure 4.2: Voting with ballot challenges. e VB polling place sends a copy of all Audi-
torium log data over a one-way channel to election headquarters (not shown) which aggregates this
data from many different precincts and republishes it. is enables third-party “challenge centers”
to provide challenge verification services to the field.

be able to check, in real time, that VB recorded and encrypted her preferences correctly. To do

this, we propose that the local network constructed at the polling place be connected to the public

Internet via a data diode [], a physical device which will guarantee that the information flow is one

way.  is connectivity will allow any interested party to watch the polling location’s Auditorium

traffic in real time. In fact, any party could provide a web interface, suitable for access via smart

phones, that could be used to see the voting challenges and perform the necessary cryptography. is

arrangement is summarized in Figure .. Additionally, on the output side of the data diode, we could

provide a standard Ethernet hub, allowing challengers to locally plug in their own auditing equipment

without relying on the election authority’s network infrastructure. Because all Auditorium messages

are digitally signed, there is no risk of the challenger being able to forge these messages.
An interesting risk with a data diode is ensuring that it is installed properly. Polling place systems could attempt

to ping known Internet hosts or otherwise map the local network topology, complaining if two-way connectivity can be
established. We could also imagine color-coding cables and plugs to clarify how they must be connected.
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4.4.2 Implications of the challenge scheme

Many states have laws against connecting votingmachines or tabulation equipment to the Internet—a

good idea, given the known security flaws in present equipment. Our cryptographic techniques,

combined with the data diode to preserve data within the precinct, offer some mitigation against the

risks of corruption in the tallying infrastructure. An observer could certainly measure the voting

volume of every precinct in real-time. is is not generally considered to be private information.

VB systems do not need a printer on every voting machine; however, Benaloh’s printed

ballot commitments offer one possibly valuable benefit: they allow any voter to take the printout

home, punch the serial number into a web site, and verify the specific ballot ciphertext that belongs

to them is part of the final tally, thus improving voters’ confidence that their votes were counted as

cast. A VB lacking this printer cannot offer voters this opportunity to verify the presence of

their own cast ballot ciphertexts. Challengers, of course, can verify that the ciphertexts are correctly

encrypted and present in the log in real-time, thus increasing the confidence of normal voters that

their votes are likewise present to be counted as cast. Optionally, Benaloh’s printer mechanism could

be added to VB, allowing voters to take home a printed receipt specifying the ciphertext of

their ballot.

Similarly, VB systems do not need s. While s impose limits on the extent to

which a malicious VB can corrupt the election tallies by corrupting individual votes, this sort

ofmisbehavior can be detected through our challengemechanism. Regardless, swould integrate

easily with our system and would provide an important “sanity checking” function that can apply to

every ballot, rather than only the challenged ballots.

4.5 Procedures: administering a VøȚȃBøǐ election

To summarize the ballot challenge design, let us review the steps involved in conducting an election

with the system.
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4.5.1 Before the election

. e ballot preparation soware is used to create the necessary ballot definitions.

. Ballot definitions are independently reviewed for correctness (so that the ballot preparation

soware need not be trusted).

. Ballot definitions and key material (for vote encryption) are distributed to polling places along

with VB equipment.

4.5.2 Opening the polls

. e Auditorium network is established and connected to the outside world through a data

diode.

. All supervisor consoles are powered on, connected to the Auditorium network, and one of

them is enabled as the primary console (others are present for failover purposes).

. Booth machines are powered on and connected to the Auditorium network.

. A “launch code” is distributed to the polling place by the election administrator.

. Poll workers open the polls by entering the launch code.

e last step results in a “polls-open” Auditorium message, which includes the launch code. All

subsequent events that occur will, by virtue of hash chaining, provably have occurred aer this “polls-

open” message, which in turn means they will have provably occurred on or aer election day.

4.5.3 Casting votes

. e poll worker interacts with the supervisor console to enable a booth for the voter to use.

is includes selecting a machine designated as not in use and pressing an “authorize” button.

. e supervisor console broadcasts an authorization message directing the selected machine to

interact with a voter, capture his preference, and broadcast back the result.

. If the booth does not have a copy of the ballot definition mentioned in the authorization mes-

sage, it requests that the supervisor console publish the ballot definition in a broadcast.

. e booth graphically presents the ballot to the voter and interacts with her, capturing her
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choices.

. e booth shows a review screen, listing the voter’s choices.

. If the voter needs to make changes, she can do that by navigating backward through the ballot

screens. Otherwise, she indicates she is satisfied with her selections.

. e booth publishes the encrypted ballot over the network, thereby committing to its contents.

e voter may now choose one of two paths to complete her voting session:

Cast her vote by pressing a physical button. e VB signals to the voter that she may

exit the booth area; it also publishes a message declaring that the encrypted ballot has been

officially cast and can no longer be challenged.

Challenge the machine by invoking a separate  function. e challenged VB must

now reveal proof that the ballot was cast correctly. It does so by publishing the secret r used to

encrypt the ballot; the ballot is no longer secret. is proof, like all Auditorium traffic, is relayed

to the outsideworld, where a challenge verifier can validate against the earlier commitment and

determine whether the machine was behaving correctly. e voter or poll workers can contact

the challenge verifier out-of-band (e.g., with a smartphone’s web browser) to discover the result

of this challenge. Finally, the ballot committed to in step  is nullified by the existence of the

proof in the log. e VB resets its state. e challenge is complete.

4.5.4 Closing the polls

. A poll worker interacts with the supervisor console, instructing it to close the polls.

. e supervisor console broadcasts a “polls-closed” message, which is the final message that

needs to go in the global log. ehash of thismessage is summarized on the supervisor console.

. Poll workers note this value and promptly distribute it outside the polling place, fixing the end

of the election in time (just as the beginning was fixed by the launch code).

. Poll workers are now free to disconnect and power off VBes.
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4.6 Security of the cryptosystem and ballot challenge technique

4.6.1 Ballot decryption key material

We have thus far avoided the topic of which parties are entitled to decrypt the finished tally, assum-

ing that there exists a single entity (perhaps the director of elections) holding an El Gamal private

key. We can instead break the decryption key up into shares [, ] and distribute them to several

mutually-untrusting individuals, such as representatives of each major political party, forcing them

to cooperate to view the final totals.

is may be insufficient to accommodate varying legal requirements. Some jurisdictions require

that each county, or even each polling place, be able to generate its own tallies on the spot once the

polls close. In this case we must create separate key material for each tallying party, complicating

the matter of who should hold the decryption key. Our design frees us to place the decryption key

on, e.g., the supervisor console, or a  key held by a local election administrator. We can also

use threshold decryption to distribute key shares among multiple VBes in the polling place or

among mutually-untrusting individuals present in the polling place.

4.6.2 Covert channels in randomized ciphers

is El Gamal-based cryptosystem, like many others, relies on the generation of random numbers

as part of the encryption process. Since the ciphertext includes gr, a malicious voting machine could

perform O(2k) computations to encode k bits in gr, perhaps leaking information about voters’ se-

lections. Karlof et al. [] suggest several possible solutions, including the use of trusted hardware.

Verifiable randomnessmay also be possible as a network service or amulti-party computation within

the VB network [].

4.7 Attacks on the challenge system

A subtle source of attacks on such cryptographic measures, proposed by Kelsey et al. [], comes in

the form of covert communication channels between the voting machine and the voter. is may

seem counter-intuitive: is the voting machine not supposed to communicate with the voter? Yet, a
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malicious voting machine could cooperate with some present human to subvert the challenge sys-

tem. For instance, if a poll worker could somehow communicate to the VB (e.g. through a

“secret knock” of predetermined, seemingly-innocuous  actions) that the machine was about to

be challenged by a voter, the machine could easily escape detection by operating correctly for that

voting session.

e voter, acting as a challenger, may also collude with the machine. A malicious VB

could send a signal to the voter, indicating whether or not she should challenge, using something as

unobtrusive as the parity of the vote’s ciphertext (by subverting the randomness of the cipher as in

Section ..). An external observer could then catch her if she failed to vote as intended. Benaloh

solves this particular problem by having the paper commitment hidden behind an opaque shield;

she can see that the commitment has been made, but nothing more. However, one can envision very

subtle cues in the voting  that have the same effect (a color change, typographic error, etc.); the

entire voting machine cannot be hidden behind an opaque shield!

To address attacks of this form, wemust constrain a would-be challenger’s behavior. A votermust

declare to poll workers, aer being authorized to vote (i.e., aer the authorized-to-castmessage) but

before entering the booth, that she intends to challenge the VB. At this point, a poll worker

should supervise the challengewhile the challenger proceeds to vote. While theVB has no idea

it is being challenged, the voter (or absolutely anybody else) can freely use the machine, videotape

the screen, and observe its network behavior. e challenger must not, however, be allowed to cast

the ballot. (ere might even be a physical cover that can be locked on the outside of a hardware

“cast ballot” button enforcing this.)

Similarly, undeclared challenges must not be allowed. Recall that because a challenged ballot is

exposed to the network (and, consequently, the world) by revealing the one-time decryption value

r, such ballots are spoiled and must never be tallied. By showing the user a cast ballot confirmation

screen while secretly issuing challenges, the voting machine can disenfranchise any voter or defraud

any candidate. To address these phantom challenges, we take advantage of Auditorium. Challenge

messages, which are broadcast to the entire network, initiate a suitable alarm on the supervisor con-

sole. For a genuine challenge, the supervisor will be expecting the alarm. Otherwise, the unexpected



CHAPTER 4 VERIFIABILITY: THE CAST-AS-INTENDED CHALLENGE 57

Figure 4.3: Final VøȚȃBøǐ screen: challenge, or record? is decision point comes aer the
voter has already confirmed her choices on the review screen; note that she has no way to go “back”
to modify the ballot at this point, as her ballot has already been encrypted and broadcast in the
Auditorium as part of the VB commitment. Compare with the “Previous Page” and “Next
Page” buttons visible in Figure ., representative of every other screen in the VB ballot. Note
also that this user experience is entirely determined by the graphics and layout logic in the current
ballot creation tool (Section .); the VB booth soware is agnostic to the presentation of these
functions, including graphic treatment and even placement in the overall flow of the ballot.

alarmwould cue a supervisor to offer the voter a chance to vote again (perhaps on another VB,

as the one that issued the spurious challenge may need to be removed from service for examination).

ere is a related user interface issue here: How do we present the option to challenge a ballot

in such a way that a voter who does not wish to use the challenge feature (and indeed may not be

aware of its existence) cannot accidentally challenge her ballot? is question is open. In VB,

the “challenge” button is clearly visible (Figure .), on par with the “cast” button (for ease of de-

velopment and demonstration). In practice, the challenge button should be more unobtrusive to
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deter or eliminate accidental invocation. Still, some number of non-challenging voters will acciden-

tally challenge their ballots. is problem is mitigated by the same measure used to combat spurious

machine-initiated challenges. Poll workers, upon observing a supervisor console alarm indicating a

challenge, can explain the situation to the voter and offer them the opportunity to vote over again.

erefore, accidental challenges will only inconvenience, rather than disenfranchise, a voter.

4.8 Verifying the tabulation

e techniques described in this chapter yield a powerful result: the ability to audit VB ma-

chines for correctness, preserving privacy, without artificial logic & accuracy test conditions. e

cast as intended verifiability property, normally very difficult for a  to satisfy, is satisfied here.

What, then, of counted as cast? Because the Auditorium logs represent a complete and accurate

account of election day events, the records may be recounted at any time using different soware,

provided that the recounter possesses the appropriate private key shares. is may not be enough

to satisfy a critical third party who, while not entrusted with such key material, might legitimately

wish to confirm that the decryption and summation are performed correctly. Chapter  describes a

number of cryptographic voting systems that usemixnets to achieve this property, and this technique

is also applicable to VB.

A simpler approach, leveraging the homomorphic tallying used inVB, can be used to prove

to a third party that a value is decrypted faithfully.

e scenario is as follows: a third party, perhaps an entity already serving as an offsite challenge

center, wishes also to verify the correctness of the decrypted tally. (In the rest of this section, “chal-

lenger” will refer to such a third party, and “prover” will refer to the state.) ere are two steps:

() independently confirming the encrypted tally, and () verifying that the decryption matches the

encryption.

e challenger accomplishes the first step by collecting all the ciphertexts for all valid ballots

(that is, those not spoiled by challenging) and multiplying them. e result is the encipherment of

the overall tally; this number can be compared with a published result from election officials. If these

values are not equal, the set of encrypted ballots seen by the challenge center is different from the set
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seen by elections officials and can alert all parties involved to the discrepancy (which may require

legal means to resolve).

Having established that the summing was performed accurately, the challenger now verifies the

correctness of the decryption. is technique applies the Chaum-Pedersen protocol for proving the

equivalence of discrete logarithms [], inspired by a similar application in Helios []. Given the

public key ga and a ciphertext (α, β) = (gr, garm) of plaintext m (as given in Equation .):

. e prover chooses a random w and provides (A,B) = (gw, grw).

. e challenger sends a challenge value c to the prover.

. e prover computes t = w + ac and sends t to the challenger.

. e challenger can now confirm that (i) gt = Agac and (ii) grt = B(β/m)c:

(i) gt = gw+ac

= gwgac

= A(ga)c

(ii) grt = gr(w+ac)

= grwgrac

= Bgrac

= B(gar)c

= B

(
garm

m

)c

= B(β/m)c

is is an interactive proof, requiring two rounds of communication between the (honest) prover

and challenger. By applying the Fiat-Shamir heuristic [], which turns interactive proofs into non-

interactive ones by enforcing the challenge value c to be the output of a one-way function of the proof

inputs (A,B), this can be made non-interactive.



CHAPTER 5

QUERIF IER: SECURE LOG ANALYSIS

5.1 Integrity checking in secure logs

In this chapter I consider the problem of what to do with the secure logs of the sort meticulously

captured by VB and gossiped in the Auditorium. According to Schneier and Kelsey:

Audit logs are useless unless someone reads them. Hence, we first assume that there is
a soware program whose job it is to scan all audit logs and look for suspicious entries.
. . .Aer that, the details are completely dependent on the particular log entries. []

Current research in secure and entangled logging is content to leave the discussion here, having

successfully argued that buried within such a secure log is proof of its order and integrity. But how

might one go about unearthing this proof? For a log with many entries, how can an auditor locate,

for example, a hole in the record le by the omission of an incriminating statement?

is low-level idea of validity—namely, that a secure log is tamper-free if its hash chains are valid

and complete—can be verified mechanically. It is easy to envision a program that combs such a log,

computing message digests and validating signatures. e program will likely differ for each appli-

cation, owing to the idiosyncrasies of log formats, but will perform the same essential computations.

5.1.1 Application-specific properties

It is reasonable to assume that an application which makes use of such logs might want to enforce

more sophisticated constraints on the behavior of its participants (as evidenced by entries in the log).

For example:
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In a banking system: One can ask questions about transactions and balances. For example,

did Alice receive a certain amount of money before spending it? is could help her prove that

she never went below a minimum account balance.

In a stock trading system: Ordering issues are critical to the fair execution of stock trades.

For example, the SEC has charged several stock traders with eavesdropping on large institu-

tional stock orders and trading ahead of them at better prices []. is evidence naturally

extends to more typical communications (e.g., email, instant messaging), permitting someone

accused of insider trading to prove that they issued a stock order before they acquired any

insider information.

In a multiplayer game: Modern online games typically rely on correct behavior of client so-

ware, and are therefore vulnerable to cheating by modified clients. Such a constraint might

involve a player completing some action (e.g., a payment) before being allowed to begin an-

other action (e.g., accessing a certain area). Violation of this constraint indicates buggy or

malicious soware.

In a file server: Yumerefendi et al. [] describe a networked storage service that uses secure

logs as evidence when the correctness of the server is challenged. Clients “trust but verify”

the server, periodically requesting from it proofs of correct behavior. Clients must check these

proofs for semantic correctness: beyond merely being well-formed and authentic, they must

conform to the operational semantics of a file server.

e motivating example in this thesis, of course, is VB, and the many crucial election

events (such as polls opened and ballot cast) that, when encoded in ordered secure logs, tell a believable

tale of election day. In order tomake this claim, auditors must be able to automatically examine these

logs not just for breaks in the hash chain, but for violation of the “rules” of a valid election in this

system. For example, each ballot to be tallied must first be shown to have been authorized to be cast.

As described in Chapter , these authorizations appear in the log as authorized-to-cast messages

originated by the supervisor when it assigns a new voter to a specific booth; one such message must

therefore precede every single cast-ballot message.
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Clearly, this rule—asserting an invariant in the secure log—makes sense only in the context of the

electronic voting problem, and is in fact intimately tied to this particular system design. It is reason-

able to assume that other systems that employ secure logs will have their own particular constraints,

above and beyond state replication, that must be mechanically verified.

Ideally, it ought to be possible to develop a single log analysis tool that, given a log, can reach any

such conclusion that an application might need. e tool should need no intrinsic understanding of

the structure of the log, nor of the application’s needs; nor should it achieve this generality by imposing

those things on an application. Rather, applications should to be able to specify what behavior is

considered correct, and to do so in terms of their own log entry structure and format.

Finally, this verification tool must not rely on deterministic or repeatable behavior on the part

of nonetheless correct applications. e correctness properties that are of interest are not limited to

matters of faithfully replicating some piece of state across a system. at is, a system free of Byzantine

faults (e.g., a buggy implementation, or a correct system that is incorrectly operated) may still violate

a rule that has been established for the system. erefore, techniques such as  [] or the recently

proposed PeerReview [], which relies on deterministic replay to identify failures, are insufficient

to the task described here.

5.2 A language for log properties

I begin by proposing an abstract language for an application to articulate its constraints and queries

over logs, including secure logs, to some general-purpose rule evaluator. is language is based on

the well-understood constructs of first-order predicate logic. Useful properties of logs are naturally

expressible in such a system. In this section, I detail the semantics of this language; discussion of how

to interpret this language for concrete inputs is the subject of the following section.

5.2.1 Domain of expression

In practice, a log is a finite set of entries. An entry might take the form of a single datum, such as a

character string; a list or array of strings or other data; or a more general recursive structure, possibly

including other entries. e language must generalize over all such logs.
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I therefore propose the following domain for expressions in this language. e abstract set of all

tuples (denoted T∗) has as elements all tuples whose entries are either other tuples or elements of the

set of characters (denoted T). (As a shorthand, strings—flat tuples of only characters—will be written

in “quotes”.) In addition, T∗ contains the null tuple (ε) and the wildcard tuple (?).

Finally, T∗ is an infinite set, so define L ⊂ T∗ is defined to be the finite corpus of log entries under

scrutiny. L will refer to a set of concrete log entries that have been produced by an application and

that may therefore be considered by logical rules.

5.2.2 Relations

e following relations (functions over tuple space) are defined:

Equality (T∗ × T∗ → {, }) T1 = T2 is defined to be true if both are ε, or if they have

the same length and are recursively equal: that is, the ith sub-element of T1 and T2 are equal

for all 1 ≤ i ≤ |T1|.

Pattern matching (T∗ × T∗ → T∗) A tuple T1 matches the tuple pattern P (written T1.P )

if they are recursively equal as described above, with the following relaxation: any mem-

ber of T∗ is also considered to be a match for special wildcard tuple. is permits recur-

sive pattern-matching of tuples. For example, the tuples ⟨“All”, “Men”, “Are”, “Mortal”⟩ and

⟨“All”, “Cats”, “Are”, “Animals”⟩ both match the pattern ⟨“All”, ?, “Are”, ?⟩.

e result value of T1.P is defined in the affirmative case to be a tuple containing those sub-

elements of T1 that correspond to the wildcards in the pattern P . erefore, the result of the

match

⟨“All”, “Men”, “Are”, “Mortal”⟩.⟨“All”, ?, “Are”, ?⟩ is the tuple ⟨“Men”, “Mortal”⟩.

When T1 and P do not recursively match, that is, for some subexpression of T1, it is not equal

to the corresponding (non-wildcard) subexpression of P , the result of T1.P is defined to be ε.

Ordering (T∗ × T∗ → {, }) A function that is absolutely essential to rules for secure

logs—and which is therefore included in the core logic—is the “precedes” relation. T1 ≺≺ T2

is defined as true if T1 ∈ L and T2 ∈ L and T1 provably precedes T2 in time. (ough this
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relationship is represented in secure logs by a a hash chain path between T2 and T1, discussion

of concrete implementations is avoided here. It is sufficient to make this operation available to

the logic. e problem of finding this path is discussed in Section ...)

Other functions ((T∗)n → T∗; n > 0) Arbitrary relations over tuple space may be necessary in

order to express interesting rules. (For example, an application may wish to write rules that

involve cryptographic operations, such as hash computation or signature verification.) Such

functions are explicitly allowed in the language.

5.2.3 Logical expressivity

Sentences involving these relations are expressed in a bivalent predicate logicwhose universal domain

is T∗.

Truth-functional connection For any formulæ Φ and Ψ, the truth functions are defined: negation

(¬Φ), conjunction (Φ ∧Ψ), disjunction (Φ ∨Ψ), and material conditional (Φ→ Ψ).

Quantification e universal and existential quantifiers are also defined over T∗, and have the form

(∀α) Φ and (∃α) Φ respectively, where only the variable α is allowed to be free in Φ.

(e shorthand (∀α ∈ S) Φ represents the conditional expression (∀α) ((α ∈ S)→ Φ). e

set S ⊂ T∗ can be defined using set-builder notation of the form S = {α : α ∈ L and Ψ},

where the variable α may be free in the predicate Ψ.)

5.3 Algorithms used in Querifier

5.3.1 Evaluation of tuple logic expressions

To guarantee this tuple logic’s decidability, quantification over infinite sets is not allowed. Intuitively,

this restriction does not limit an application in the practical sense; the set of constraints an arbitrary

application should wish to verify will only govern L (the logs under scrutiny), which is, by definition,

a finite set. I now consider the problem of evaluation, that is, computing the results of expressions in

this logic.



CHAPTER 5 QUERIFIER: SECURE LOG ANALYSIS 65

Logical formulæ

Each of the truth-functional connectives can be evaluated by a constant-time lookup in a small fixed

truth table. A single quantification (∀α ∈ S) Φ or (∃α ∈ S) Φ can be evaluated by doing an

exhaustive search of S for a witness which makes Φ false (in the former case) or true (in the latter

case). At each iteration in the search, Φ must be evaluated once. Assuming Φ has only connectives

and relations, then the un-optimized evaluation of a single quantifier is O(n · c), where n is the

cardinality of S and c is the cost of evaluating the formula Φ (which may involve relation evaluation,

described below). More generally, the complexity of any expression involving quantification isO(nd ·

c), where d is the maximum depth of quantifier nesting.

Relations

Evaluating the pattern-match relation can be done using a recursive pairwise comparison algorithm

mirroring the description given in Section ... Any atom (character or ε) matches itself; the wild-

card matches any tuple or atom. Two tuples T1 and T2 match if their lengths are the same and each

respective pair of elements recursively match. is algorithm’s complexity is O(s), where s is the size

of the pattern (more specifically, the number of sub-tuples and atoms in the pattern). Equality can

be treated as a special case of match in which no wildcards are present.

Finding counterexamples and witnesses

Beyond merely determining whether a log is valid given a rule set, it is also important to consider

how to identify the specific entries that are responsible for violations. is task is challenging be-

cause it is unclear, given an arbitrary expression, whether any individual subexpression’s truth value

is exceptional and therefore of interest. If a negation governs a quantifier, its meaning is inverted,

making it impossible to automatically determine if, when a witness is found in the exhaustive search,

it is evidence of good or bad behavior.

If automatic isolation of these witnesses is desired, rules may be transformed (preserving truth)

such that negations only govern predicates, not quantifiers. is translation is performed by repeated

application of De Morgan’s law for truth-functions [¬(Φ∧Ψ)⇔ (¬Φ∨¬Ψ) ; ¬(Φ∨Ψ)⇔ (¬Φ∧
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¬Ψ)] and Quantifier Negation [¬(∀α)Φ ⇔ (∃α)¬Φ ; ¬(∃α)Φ ⇔ (∀α)¬Φ]. If, in the course of

evaluating any universally quantified formula, a member of the domain set is found to make the

quantified formula false, then this member serves as a counter-example. Likewise, a member which

makes an existentially quantified formula true serves as a witness. Because quantifiers can be nested,

such a witness or counter-example of a nested quantifier must be reported along with any bindings

in effect from parent quantifiers for it to be meaningful.

5.3.2 Algorithms for ordering log entries

The graph of time

e hash chains in secure logs provide irrefutable evidence of order, so I turn now to the problem of

determining the temporal relationship between any pair of entries in the log.

Determining order can naturally be cast as a graph search problem, because hash-chained log

entries form a graph of time: a directed acyclic graph whose vertices are entries, and whose directed

edges represent direct precedence. If a hash chain path exists in a log leading from entry B to entry

A, then the event described by entry A must have happened before event B. (A corollary of the

“happened before” relationship is potential causality: A may have affected B [].) If instead a path

exists from A to B, then B precedes A in time.

If neither of these directed paths exists, yet A and B are still a member of the same graph of

time, they are contemporaneous events. ey may not actually have happened simultaneously in

“real” time, but the graph of time cannot establish their relative ordering; there exists only a common

precedent, a common successor, or both.

In a systemwhere concurrent events are impossible, the  degenerates to a list and such queries

can be made very fast, but any interesting system will allow two events A and B to be contempora-

neous and so a more general graph search must be performed.

e algorithms presented here represent various points in the time/space efficiency spectrum;

space efficiency can be traded for time efficiency in varying degrees when solving this problem.

Table . summarizes the complexity of the four techniques.

is analysis makes frequent reference to the following variables: the number of hosts k, the
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Technique Prep Lookup Space

Graph search — O(e) O(n)
Full precomputation (Warshall’s) O(n3) O(1) O(n2)
Memoized graph search — O(e) O(n2)
Graph search with pruning — O(e) O(n)
Precompute with timelines O(k · e) O(1) O(n · k)

Table5.1: Summaryof graph-of-time search algorithms. “Prep” is the running time for the startup
phase of the algorithm, and “Lookup” is the running time for each test of A ≺≺ B. “Space” is the
storage cost of the algorithmover all operations. (Complexity is given in terms ofn log entries among
k hosts and e edges in the graph of time.)

number of log messages in the system n, and the number of edges e. In all cases, the partial ordering

of log messages is organized as a  representing the graph of time.

Graph search algorithms

Full graph search To determine if A precedes B, the algorithm performs a conventional graph

search of the  starting at B and ending at A. O(n) storage is required for the interme-

diate state (e.g., the frontier set) and the worst case time complexity is O(e). While either

depth-first or breadth-first search will give correct results, if the graph of time is structured as

a set of long timelines with few intersections, depth-first search may consume a great deal of

time searching the wrong branch for a desired entry.

Full precomputation Warshall’s algorithm for all-points shortest paths [] can be used to calcu-

late the pairwise ordering relationship for all pairs of messages in the . is takes O(n3)

time to compute, and storing this table takes O(n2) space, but subsequent tests for order re-

duce to table lookup and take constant time. Note that the table becomes invalid (and must

therefore be recomputed) when new log entries are introduced; therefore, this technique is

only recommended for static logs.

Memoized search A variant on full graph search, this technique optimizes for situations in which

a few entries of interest are compared with many others. When evaluating A ≺≺ B, the

algorithm traverses the graph from B in search of A. Noting that every node x ever entering
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the frontier set precedes B, the algorithm stores the relationship x ≺≺ B for future queries.

Depending on the structure of the logs and query order, lookups may now return in constant

time, though they still have a worst case running time of O(e) as in conventional graph search.

I now consider a particular subset of all graphs of time: namely, those that comprise a small number

of timelines. is occurs in distributed systems in which each participant’s secure log establishes a

total order on its entries. Such a per-host ordering may be efficiently verified by ensuring that each

new message from a given host includes the hash of the previous message from the same host.

If this property holds for all hosts in the system, there exists an opportunity for some novel op-

timizations when searching the graph of time. e following two algorithms assume a system with

k hosts (and therefore k timelines) such that that k is substantially less than the total number of log

entries n.

Graph search with pruning First, assume that for each message x, its host h = host(x) is known,

as well as its integer index in that host’s log, idx(h, x). As such, to compute A ≺≺ B, the

algorithm begins as usual by searching the  from B with the intent of finding A. Note once

again that for each x discovered during this search, x ≺≺ B. If any message x is discovered

such that host(A) = host(x) = h, we can then take advantage of the total ordering of the

messages from h and compare idx(h,A) and idx(h, x):

If idx(h,A) < idx(h, x), then A precedes x in h’s log. Because x ≺≺ B, it is the case

that A ≺≺ B and so the search ends.

If idx(h,A) = idx(h, x), then x = A because messages on h are totally ordered. ere-

fore, the search terminates, having shown A ≺≺ B.

If idx(h,A) > idx(h, x), x is older than A. It is not yet known definitively whether

A ≺≺ B; a path might still exist from B to A. What has been shown is that, because

x precedes A and time is acyclic, x cannot be on any such path. e algorithm may

therefore prune this part of the search tree and continue searching from other nodes in

the frontier set.

In the worst case, no vertices are pruned, resulting in the same space and time complexity as
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graph search, but in graphs of time that result from very dense entanglement and few extended

divergences, most search paths are pruned very quickly.

Precompute with timelines While a full precomputation of the pairwise ordering relationship con-

sumes O(n2) space, some of this information is redundant when assuming that the  is

composed of timelines. If A ≺≺ B for some entries A and B, it is also true that A precedes

all subsequent entries in B’s timeline.

is means that for every entry x, on every host h there exists a unique index i ∈ [0,∞] such

that, for any y in h’s timeline, if i ≤ idx(h, y) then x ≺≺ y. (An index of∞ indicates no such

entry exists.) is index is the least upper bound of the projection of x onto the timeline of

host h; that is, it is the “latest” that it may have happened from the perspective of h.

It is possible to precompute the full table P of these projections: P(x, h)← i. Using this table,

x ≺≺ y is true when P(x, h) ≤ idx(h, y), where h = host(y). Lookups in this table cost O(1)

and storage is O(k · n).

I now offer two approaches to pre-computing the table P such that it maintains the invariant

that P(x, h) ≤ P(y, h) for all x ≺≺ y.

Naïve computation of P. e first approach exploits the fact that P(x, h) ≤ idx(h, y) iff x ≺

≺ y and h = host(y). It begins by initializing P(y, h) ← ∞ for every y on every host h;

this will be an initial estimate which will be relaxed during the precomputation. For every

entry y at index i = idx(h, y) on its own timeline, the algorithm performs a  through the

entire subgraph of preceding events x reachable from y. Each x ≺≺ y, so the estimate relaxes:

P(x, h)← min(P(x, h), i). Once this search has beenperformed for every y onhosth,P(x, h)

will be equal to the smallest idx(h, y). e cost of this precomputation isO(n+n·e) = O(n·e).

Improved computation of P. is technique operates similarly to the näive approach, but re-

duces the cost of precomputation to O(k · e) by exploiting two insights:

By iterating over all messages for each host in timeline order—that is, in order of increas-

ing idx(h, y)—the estimate is relaxed no more than once: P(x, h) will be set to its lowest

possible value immediately.
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Nodes may be pruned from the traversal when they cannot cause any further updates to

P. is happens whenever P(x, h) ≤ idx(h, y)—that is, when the search encounters a

region of the graph that has already been identified as projecting to a point on the timeline

of h that already precedes y.

Using this algorithm, each P(x, h) entry is only updated once. For each host h, then, each

edge in the graph of time must therefore be followed exactly once; any attempt to follow an

edge x→ x′ a second time would result in relaxing P(x, h) a second time. erefore, the total

number of edges visited per host is O(e), and the total precomputation cost is O(n + k · e) =

O(k · e).

5.3.3 Incremental verification

An application may wish to use a rule evaluator not just as a post facto auditing tool but as a runtime

watchdog. Such usage necessitates applying the verification engine “online,” on a growing log created

by a running application. As an example, a supervisor console for a network of electronic voting

machines could use incremental rule verification on its event log while the election is ongoing. A

runtime rule violation might be cause to alert a poll worker to take the offending machine out of

service for examination.

Unfortunately, so far I have only described algorithms for a verifier that operates “offline”: all

at once, on a log considered to be complete. A straightforward approach to online verification is

to periodically re-start the verifier from scratch, using as input the entirety of the log so far. is

approach can prove quite costly; each time the verification process is begun, it will re-consider earlier

entries that are unchanged from the last run. Clearly, a great deal of redundant computation may

result, which, given complex rules involving multiple nested quantifications, will be polynomial in

the number of log entries. If this performance penalty is avoided by evaluating rules more rarely,

however, the ability to detect constraints violations as they occur is reduced.
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Limitations of all-at-once evaluation

ere is a more subtle limitation here: A post facto verifier makes no accommodation for potential

future changes to the log. In particular, it cannot distinguish the difference between the case where

an entry is missing from a partial log because it hasn’t yet appeared and the case where it never will.

Consider, again in the electronic voting context, the following constraint:

(∀b ∈ L) ( b.  ̸= ε ) ⇒ (∃z ∈ L) ( z.  ≠ ε ∧ b ≺≺ z )

is rule confirms that all ballots were cast before the polls closed on election day (and were not

added later). e basic verifier, presented with an incomplete log (that is, one in which the polls-

closed message has not yet appeared), will erroneously deduce a violation.

It is tempting to sidestep this particular complication by taking the additional manual step of

segregating the rule set into two categories: those that may be evaluated at any time, and those (such

as the foregoing) that must wait until the log is complete. But this is unsatisfying; certainly, a unified

approach to rules and queries is preferable. Moreover, the verifier has enough information to know

when a part of the evaluation is final andwhen it is not; it should be able to produce definitive answers

as soon as they are available, rather than blindlywaiting until the log is complete for these tricky cases.

Performing partial evaluation

Recall that L ⊂ T∗ is the set of all log messages under scrutiny. Note that L grows monotoni-

cally—log entries, once added, are never taken away from the log. (If this were possible, any secure

logging scheme would be faulty.) For this reason, S ⊆ L is defined to be open if new elements may

appear later, and closed if S contains all the elements that it will ever contain. e evaluation of a

quantification over a closed S, then, behaves precisely as before. e evaluation of a quantification

over an open S, however, behaves differently. In the case where, while evaluating (∃α ∈ S)Φ, a

witness is not found, it cannot be assumed that one will never be found. Likewise, in the case where,

while evaluating (∀α ∈ S)Φ, a counter-example is not found, it cannot be assumed that one will

never be found.
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To represent this, any particular evaluation which involves quantification over an open set may

result in a reduction rather than in a result. is reduction, while its truth value is unknown, is a

simplification of the original problem. at is, when the reduction is evaluated, no computation will

be repeated in the search for truth.

In the case where no witness is found for an existential quantifier over an open set, the reduc-

tion returned will only represent the computation yet to be done (i.e., the evaluation of the governed

formula in the case where the variable is bound to any future set member.) In the case where no

counter-example is found for a universal quantifier over an open set, the reduction returned will

similarly only represent computation regarding future entries. In all other cases, evaluation of quan-

tification over an open set behaves exactly as it does over a closed set (e.g., if a witness is found in

an existential over an open set, there is no reason not to evaluate this as true, even though the set

is open). Now, rather than O(n · c) for each quantifier evaluation (given cost c for the quantified

expression), this becomes O(c) per incremental evaluation in the worst case.

Because these reductions have been introduced as placeholders for truth values, truth-functions

and quantifiers must be adjusted to accommodate sub-formulæ that evaluate to reductions (i.e.,

the cases where truth-functions govern quantifiers or when quantifiers are nested). For the truth-

functions, the truth tables used for the evaluation of each truth-function are converted to the cor-

responding truth table for a three-valued system (where the third value is the unknown value). In

the case where the evaluation of some truth-function which connects two formulæ cannot be known

because reductions are evaluated from either or both of the connected formulæ, these reductions are

connected using this truth-function and returned. Similarly, the reductions which are returned by

the evaluation of nested quantifiers will remember which of its evaluations returned reductions, and

therefore need to be re-evaluated. Concisely stated, incremental evaluation only saves work on the

inner-most nested quantifier which governs the open set in question. In the case where d quantifiers

are nested over the same open set, the run time for each incremental evaluation is O(nd−1 · c) per

incremental evaluation in the worst case, with O(nd−1) space needed to save the reduction.
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Figure 5.1: Querifier components and operation. Applications supply rules in the form of S-
expressions; the verifier parses rule expressions into an  suitable for evaluation. Log entries, also
S-exps, are fed to the verifier, which recursively interprets the  for each, finally yielding a result
value and a list of assertions (if any). Partial results contain sufficient state to resume the evaluator
without performing redundant computation when new log data arrives.

5.4 Implementation

5.4.1 Introduction

Owing to the need, discussed in Section .., for an online verifier that can be embedded into

VB, solutions involving dedicated relational database engines or theorem provers were consid-

ered to be impractical. Instead, Kyle Derr and I developed Querifier, a log verification tool compris-

ing approximately  semicolons of Java source (including tests and performance measurement

code). Its key advances are:

Expressivity. Any rule expressible in the predicate logic of Section . is also directly expressible in

the rule language understood by Querifier; converting from one to the other is a straightfor-

ward syntactic transformation (from infix logical connectives to prefix S-expression notation).

Incremental evaluation. Querifier implements the incremental evaluation algorithm described in

Section .., and is therefore able to offer partial results with low overhead per query.

5.4.2 Operation

estructure ofQuerifier is summarized in Figure .. e coreQuerifier implementation comprises

a rule parser and evaluator. Rules and log data are represented in a format based on Rivest’s canonical

S-expression encoding []. is format was chosen due to its compact representation, low scanning
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(∃x ∈ L) (exists x all-set

(∃y ∈ L) (exists y all-set

(and

( (x.   ̸= ε) (match POLLS_OPEN_MSG x)

∧ (y.   ̸= ε) (match POLLS_CLOSED_MSG y)

∧ (x ≺≺ y) ) (precedes x y all-dag))))

Figure 5.2: S-expression representation of logical rules. e simple rule here asserts that there
exist both a polls-open and polls-closed message in the log, and that the former precedes the latter.
e special value all-set is the set of the available log messages (corresponding to the finite set L
in the logic), and all-dag is a  of time constructed from all-set by an application plugin.

complexity, and ability to encode arbitrary recursive data structures (particularly tuples, as defined

in Section .). e canonical encoding of an S-expression is unambiguous and therefore suitable

for digital signatures and hashing. It is straightforward to marshal structured log data into and out

of S-expressions, and applications may even choose to directly use S-expressions when representing

secure logs.

Clients of Querifier initially supply rules in the form of a single S-expression representing a sen-

tence in predicate logic. e sentence can be arbitrarily complex; typically, sets of rules are conjoined

to form a single rule expression. e complete grammar is omitted here for space, but an example

transformation is given in Figure .. Rules are parsed, according to the grammar, into an abstract

syntax tree ().

Applications can also supply plugins, small pieces of Java code that define additional functions

for use in rules (see Section ..). A common function of all plugins is to identify which portions

of each log message correspond to hash chain pointers so that the  of time may be constructed

and the “precedes” operation can be computed during rule evaluation.

us initialized, Querifier is ready to consume log data (as S-expressions) and generate results.

When invoked, the rule interpreter recursively navigates the , using the algorithms described in

Section . to compute a result value for the rule.

While log data is still being introduced by the application, the log is considered “open” and some

quantifiers may return, instead of truth values, reductions as defined in Section ... ese objects

contain sufficient state to resume computation at any time without duplicating effort. e log is
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eventually “closed” by the application, signaling to Querifier that no more log data will appear; from

this point forward, the final verification result is computable and no reductions will ever be returned.

In the next section I present an early performance evaluation of Querifier on realistic data and

rules. Experiments cover variations on the evaluator implementation, including all-at-once versus

incremental evaluation, as well as several graph search algorithms for determining order.

5.4.3 Experimental setup

e performance of Querifier was measured on a synthetic VB election log and a set of rules

that are representative of a realistic deployment of the Auditorium polling place.

Voting simulation. e log, comprising  individual events from  nodes (eight voting booths

and one supervisor console), was collected during an -hour real-time simulation of an election held

in a single polling place. e simulation was generated using a modified version of VB, re-

placing the supervisor and voter s with automated drivers that behave as follows. Aer opening

the polls, the supervisor authorized a new ballot (simulating a new voter being assigned to a voting

machine) every  to  seconds when voting machines were available. Each “booth” node simu-

lated a voter who completed his/her ballot anywhere from  to  seconds later. Aer eight hours,

the polls were closed; a total of  ballots were cast in that time.

Voting rules. e experimental rule set contains seven constraints, expressed in English as follows:

. All messages are correctly-formatted Auditorium voting messages.

. ere exists a polls-open message beginning the election.

. ere exists a polls-closed message concluding the election.

. e polls-open precedes the polls-closed.

. Every cast-ballot is preceded by an authorized-to-cast, and their authorization noncesmatch.

. Every cast-ballot precedes a ballot-received, and their authorization nonces match.

. Every cast-ballot has a unique authorization nonce.

is set of rules is directly derived from the goals set forth in Chapter , namely to clearly identify

the set of valid votes (occurring on election day) so that they may be counted correctly. e Audi-
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torium voting protocol was designed with these goals in mind, and so incorporates the sequence of

messages described above. erefore, the rules check whether the Auditorium voting protocol is be-

ing followed correctly and identify appropriate votes to be tallied. Other correctness properties may

be of interest; for example, in an auditing scenario, a particular query (“which votes were cast on

machine X?” “which machines joined the network late in the day?”) might be written ad hoc and fed

to Querifier in order to answer a specific question about an election transcript.

Rule  above, expressed in predicate logic, is quite simple:

(∀x ∈ L) (a.  ̸= ε)

Rules , , and  may be represented as three separate logical expressions or combined into the ex-

pression:

(∀b ∈ L) (b.  ̸= ε) ⇒ (

(∃a ∈ L) ( a.  ̸= ε ∧ a.  = b.  ∧ a ≺≺ b )

∧ (∃r ∈ L) ( r.  ̸= ε ∧ r.  = b.  ∧ b ≺≺ r )

∧ ¬(∃x ∈ L) ( x.  ̸= ε ∧ x.  = b.  ∧ x ̸= b ) )

A straightforward translation from the above to S-expression syntax (as described in Section .)

yields rules that Querifier can directly evaluate. Note that the maximum nesting depth of quantifica-

tion is ; by the reasoning in Section ., a näive implementation will perform O(n2) computations.

Equipment. e machine running Querifier was a lightly-loaded dual  GHz PowerPC G work-

station (Mac OS X .) with   ; the Java runtime in use was the Sun Java HotSpot Client 

(..).
e broader question of what it means to have a “correct election” is substantially more vague and is beyond the scope

of this chapter, and indeed this thesis, which carves out a few specific notions of correctness and offers ways to test that
correctness (Auditorium logs, Querifier queries, and cryptographic challenges).
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5.4.4 Results

Incremental evaluation. When given the entire -entry log at once, the basic Querifier imple-

mentation completed rule verification in about   seconds (.s per log entry). VB,

however, requires a solution that can be used many times during an election, because administrators

would ideally like to know about obvious violations within a short amount of time (that is, before the

end of the day).

A näive approach is to re-run Querifier anew aer every message. e cost, of course, is unac-

ceptable: the last run takes the same  seconds, resulting in an overall computation time of just

over  thousand seconds, or about ½ hours—longer than the election itself!

Much of this computation is redundant, and as described in Section .., an incremental ap-

proach is vastly preferable. To demonstrate this, I simulated an online verification scenario with a

persistent instance of incremental Querifier using reduction-based incremental evaluation. Entries

from the synthetic log were fed to this instance with different batch sizes ranging from one (invok-

ing the verifier for every entry) through the entire log (essentially the offline verification case). For

comparison, I also attempted to use a non-incremental version of Querifier with each partial log at

the same event intervals (simulating the effect of using an offline, all-at-once verifier in an online

context). Figure . shows the dramatic difference between the performance of full vs. incremental

evaluation at various intervals.

Graph search. Another experiment compares three of the algorithms for computing order between

entries in the graph of time: , memoized , and  with timeline pruning (see Section ..).

e performance of these algorithmswas examined in the incremental verifier, using the same batch-

size variation described previously; the results are shown in Figure ..

ememoized search algorithmcanbe seen to perform substantially betterwhen fed large amounts

of new log data at once; this is because the first precedence test in the new dataset frequently ends up

pre-computing other ordering relationships that will soon be requested. Pruned  performs better

still, and does so consistently for any size of input data; this can be attributed to the few () distinct

timelines that make up the overall graph of time, and systems with a greater number of participants
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Figure 5.3: Incremental evaluation. Bars indicate total time to consume and evaluate the entire
log. e rightmost bar represents an interval equal to the length of the input, in which case the two
approaches are equivalent; as the intervals get shorter, the costs of re-verifying from scratch become
obvious.

will generate logs that cannot be pruned as quickly. (Note that if there is no total ordering of each

participant’s messages, this algorithm is not applicable.)

Summary of implementations. Figure . uses a log scale to collapse the many orders of magni-

tude separating these implementation variants. Optimized graph search algorithms improve upon

all-at-once verification, but cannot fundamentally change the problem’s complexity as the reduction-

based incremental approach does. Finally, note that at an increment of  events (the full log),

incremental and full verification have almost identical performance (there is a small amount of over-

head involved in the additional data structures necessary for incremental operation, though they are

hardly used). ese evaluations show that optimization in the verifier can yield excellent gains, to

the point that the entire voting log can be processed in about  total  seconds (.s per entry).
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quantify the overhead associated with each invocation. Bars indicate total time to verify the entire
log.

Ruleset comparison. Returning to the voting scenario, the only nodes that need perform “online”

verification are the supervisors, and they can be provisioned appropriately. If performance is an

issue, the verification interval can be increased and results obtained less frequently. Likewise, not

every rule must necessarily be evaluated every time a new message arrives. Figure . compares the

performance of two smaller rule sets to the full rule set. Finally, the algorithmic complexity of the

“online” ruleset can be reduced (for example, to singly-nested quantification) so that some simpler

rules (for example, “has the election begun?”), allowing simple verifications to be executed even on

underpowered devices or devices with much higher rates of log activity.
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CHAPTER 6

PROPERTIES OF THE USER INTERFACE

6.1 Pre-rendering for assurance

A recent study [] bolsters much anecdotal evidence suggesting that voters strongly prefer the -

style electronic voting experience to more traditional methods. Cleaving to the  model (itself

based on the archetypical computerized kiosk exemplified by bankmachines, airline check-in kiosks,

and the like), VB presents the voter with a ballot consisting of a sequence of pages: full screens

containing text and graphics. e only interactive elements of the interface are buttons: rectangular

regions of the screen attached to either navigational behavior (e.g., “go to next page”) or selection

behavior (“choose candidate X”). (VB supports button activation via touch screen and com-

puter mouse, as well as keyboards and assistive technologies). An example VoteBox ballot screen is

shown in Figure .;

is simple interaction model lends itself naturally to the pre-rendered user interface, an idea

popularized in the e-voting context by Yee’s Pvote system [, ]. A pre-rendered ballot encap-

sulates both the logical content of a ballot (candidates, contests, and so forth) and the entire visual

appearance down to the pixel (including all text and graphics). Generating the ballot ahead of time

allows the votingmachine soware to perform radically fewer functions, as it is no longer required to

include any code to support text rendering (including character sets, Unicode glyphs, anti-aliasing),

user interface element layout (alignment, grids, sizing of elements), or any graphics rendering beyond

bitmap placement.
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Figure 6.1: Sample VøȚȃBøǐ page. e voter sees (i); a schematic for the page is shown in (ii); a
subset of the pixmaps used to produce (i) are shown, along with their corresponding IDs, in (iii).
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More importantly, the entire votingmachine has no need for any of these functions. e only -

related services required byVB are user input capture (in the formof (x, y)pairs for taps/clicks,

or keycodes for other input devies) and the ability to draw a pixmap at a given position in the frame-

buffer. We therefore eliminate the need for a general-purpose  window system, dramatically

reducing the amount of code on the voting machine.

In our pre-rendered design, the ballot consists of a set of image files, a configuration file which

groups these image files into pages (and specifies the layout of each page), and a configuration file

which describes the abstract content of the ballot (such as candidates, races, and propositions). is

effectively reduces the voting machine’s user interface runtime to a state machine which behaves as

follows. Initially, the runtime displays a designated initial page (which should contain instructional

information and navigational components). e voter interacts with this page by selecting one of a

subset of elements on the page which have been designated in the configuration as being selectable.

Such actions trigger responses in VB, including transitions between pages and commitment

of ballot choices, as specified by the ballot’s configuration files. e generality of this approach ac-

commodates accessibility options beyond touch-screens and visual feedback; inputs such as physical

buttons and sip-and-puff devices can be used to generate selection and navigation events (includ-

ing “advance to next choice”) for VB. Audio feedback could also be added to VB state

transitions, again following the Pvote example [].

6.2 Ballot creation

In order to construct these complex pre-rendered ballots, VB includes a separate ballot cre-

ation tool intended to be run by election administrators well in advance of an election. e Ballot

Creator, a graphical Java program, is the final destination of the layout and rendering logic that is

omitted from VB. e ballot creation tool, therefore, is the only piece of soware that needs to

understand all the jurisdictional peculiarities; it acts as a sort of compiler, generating a ballot descrip-

tion that is “executed” at “run time” (election day) by the VB system itself. is greatly simpli-

fies the soware certification process, as testing labs need consider just a single version of VB

rather than separate versions customized for each state’s needs.
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Figure 6.2: The VøȚȃBøǐ ballot creator. Visible in this screenshot is the main window, split into
three panes: the list of contests (le), the contest editor (right top), and the contest preview (right
bottom).

e user interface for the ballot creator, which is a conventional Java Swing graphical applica-

tion, is shown in Figure .. Contests (races or propositions) are created using the buttons at bottom

le; information about candidates (for races) or propositions is entered in the editor pane, and the

actual pre-rendered graphics are shown in the preview pane. e ballot can be exported to the for-

mat expected by VB; this is the final pre-rendering step and will result in a Zip archive of 

instructions and  graphics. Because information is lost in this step (candidate names are repre-

sented as bitmaps, not as Unicode strings), the ballot can also be saved to a different (lossless) file

format that represents the current ballot editing session in progress; the creator can reconstruct its

working state from this file. e creator knows how to create ballots that include multiple languages
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simultaneously; note that in Figure ., a warning is visible because not all information has been

localized (translated to each language expected in the ballot).

e ballot creator is a useful tool for creating VB ballot representations, but these two

implementations are entirely decoupled. Any other mechanism could be used to create valid ballot

files; similarly, a compatible implementation of the VB frontend could be developed—possibly

with substantially differing internal details from those described in Chaps.  and —that would still

use the same ballot format to present an identical experience to the end user.

6.3 Human factors experimentation

Also of note is the utility of this separation for our human factors collaboration. From the outset,

VB has been a collaborative effort not just within the Rice Computer Security Lab but with

faculty and students working in the Rice Computer-Human Interaction Laboratory () Head:

Mike D. Byrne; http://chil.rice.edu. Kyle Derr, Ted Torous and I worked with Kristen Greene,

and Sarah Everett of  to turn their experimental requirements into a user interface specification

and, eventually, working code in VB and the ballot creator. e result is shown in Figure ..

In addition to the graphic and interaction design of the ballot, the human factors experimentation

proposed by  required additional data collection for each subject. Data of interest included time

spent on each screen, overall completion time, plaintext of the subject’s selections, and so on. (See

Section .. for a discussion of the security and privacy implications of these additional data.)

While the two research groups worked to develop and refine the user interface and data col-

lection requirements, Derr, Torous and I were able to design and develop the necessary VB

infrastructure concurrently, having established early on a general enough  framework to ac-

commodate nearly any ballot design that might eventually be settled upon. In fact, VB has a

number of  capabilities not used by the current ballot, including:

Alternative inputs, such as hardware buttons and other (non-touchscreen, non-mouse) assis-

tive devices. is support includes an associated hidden navigation order between  elements,
Head: Dan S. Wallach; http://seclab.cs.rice.edu

http://chil.rice.edu
http://seclab.cs.rice.edu
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necessary for systems with “next” and “previous” inputs, such as scroll wheels, sip-and-puff

systems, and the like.

Focus indicators, represented as an additional pair of states (focused-but-not-selected; focused-

and-selected) for each  element that can be navigated to, either by next/previous inputs (see

above) or by “mouse over” events.

is loose  coupling is an unexpected strength of the  approach: the runtime model (dis-

play graphics, accept clicks and other input) is simple enough that it assumes very little about the

specific user experience it will eventually deliver. Of course, this complexity must reside somewhere,

and as was stated above, this place is the ballot creator. Indeed, our up-front work on the creator was

substantial, requiringmultiple rounds of iterative design with the  researchers to get it right. Yet,

while this early work was substantial, most subsequent changes in  experimental design required

only modest changes to the ballot creator, and usually none at all to VB itself. is permitted

us to take more care with changes to VB, which is the code artifact that had to be most stable

for use in human factors experiments and security research. Using a  approach helped erect a

firewall of sorts between the rapidly-changing ballot design and the less mercurial voting machine

itself. I expect that this benefit will apply equally to any production e-voting system.



CHAPTER 7

THE VOTEBOX PROTOTYPE

7.1 Introduction

e VB project was launched by our lab in February , with soware development begin-

ning in May. In three years it has been the subject of several refereed publications [, , , , ]

and figures prominently in the Ph.D. thesis of Sarah Everett [] (as well as this document). It has

been ported to two language runtimes and three graphics s, and has been used in several human

factors experiments involving hundreds of participants.

is chapter describes the project and its resulting soware artifacts in detail. In Section .,

I recount several relevant metamorphoses in the history of the project, and in Section . provide

some measurements of the current implementation as of .

7.2 Software implementation notes

7.2.1 Secure software design

From the beginning of the project, it was the group’s intent to develop a research platform to ex-

plore both security and human factors aspects of the electronic voting problem. Our early directions

included:

. Reduced trusted code base through use of a pre-rendered user interface, inspired by Yee []

. Soware simulation of hardware-enforced separation of components, based on Sastry et al. []
e Rice Computer Security Lab, http://seclab.cs.rice.edu/, run by Dan Wallach.

http://seclab.cs.rice.edu/
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. Hardware support for strict runtime soware configuration control (i.e., trusted computing

hardware)

. Recoverable and secure audit logs

e first approach, , became a core part of the soware design of VB, as documented

in Chapter . From the Sastry example we borrow the technique of enforcing inter-voter privacy by

tearing down and reconstructing large parts of the program between voters. e votebox.VoteBox

class, a singleton object responsible for bootstrapping the Auditorium and user interface subsys-

tems, essentially “reboots” the latter between voters. e user interface is not instantiated until an

authorized-to-castmessage from the supervisor console is received by the local Auditoriumnode. At

this point, the voting statemachine (votebox.driver.Driver) is constructed, which in turn uses the

correct view factory to construct the objects necessary to interact with the display technology in use

(SDLorAWT; see below). eDriver also constructs an instance of votebox.middle.ballot.Ballot

to extract from the ballot definition file the ballot state machine and layout information (see Chap-

ter ). e driver, view, and ballot objects are discarded (pointers destroyed, objects scheduled for

garbage collection) when the ballot is cast or challenged. e Java runtime enforces that these freed

objects can no longer be read by running code, preventing information from leaking from one voter

to the next.

e topic of trusted hardwaredrove a substantial number of early design decisions aboutVB’s

target platform. e original strategy for soware configuration assurance was to develop a voting

system to run on the Xbox  video game platform, initially developing VB in managed C

(that is, C code using the Microso XNA Framework and targeting the managed runtime of the

Xbox). We theorized that a video game console and an electronic voting machine shared a number

of features:
For pragmatic reasons—chiefly, a focus on writing straightforward, maintainable code for those auditing (and devel-

oping!) the code—VB does not apply the other technique from Sastry et al. (namely, observable “wires” between
distinct modules), but this is an interesting direction for future work on the VB platform.

e objects used to capture a voter’s selections in VB exemplify the classic Model-View-Controller design pat-
tern for interactive applications: the ballot is the model, the View is (unsurprisingly) the view, and the Driver mediates
between them. is  system is constructed anew for each voter by the VoteBox object, which receives the completed
Ballot object to be cast and hands it to the Auditorium code. In a sense, this represents another complete  system:
the Ballot remains the model, but now the network is the “view” that is tied to it by the VoteBox acting as a controller.

e VB name derives in part from this early direction, known at the time as the “ ”.
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. e Xbox (both the original and the  update) has sophisticated hardware devoted to ensur-

ing that the system runs only certified soware programs, which is an obviously useful feature

for a .

. Video game systems are designed to be inexpensive and towithstand some abuse, making them

good candidates for use in polling places.

. A lack of a conventional desktop operating system is no problem for a prerendered user inter-

face; we were fairly confident that an Xbox could handle displaying static pixmaps.

Derr, Torous, and I consequently developed the first VoteBox prototype as a conventional .NET desk-

top application, intending to port it to XNA when the toolchain and hardware became available.

Hardware was not forthcoming, however, and being able to test only on Windows systems (.NET

support on other platforms via the open-source Mono project not being mature enough to support

our code) proved a development and deployment bottleneck. We found that development for a more

widely-available soware platformwas both easier for us andmore likely to result in a usable research

product.

By August,  we had ported our early VB prototype to Java. We had no intention of

relying on Java’s  graphical interface (and its dependency, in turn, on a window system such as X

or Windows). Instead, we intended to develop VB atop , the Simple DirectMedia Layer, a

dramatically simpler graphics stack. (ePvote system also uses  as a side-effect of its dependency

on the Pygame library [].) Regrettably, the available Java bindings for  suffered from stability

problems, forcing us to run our  atop a limited subset of  (including only bitmap drawing

and user input events).

Finally, the impetus for a robust auditing infrastructure resulted directly frommy experiencewith

the contestedWebbCounty primary election in Laredo, in the context ofmy recently-completedwork

on peer-to-peer publishing systems []. e details of that field work, and the Auditorium system
Of note: the hardware protection scheme on the Xbox was broken by Huang, whose book on the subject [] would of

course be available to any potential hacker. ere was some concern among the group that (as there is quite a bit of interest
in running unsanctioned/pirated game soware on Xbox) it was only a matter of time until the  fell as well; indeed, by
May  there had already been rumors and video circulated of a firmware hack that would allow unauthorized soware
to run on the . []

http://www.sdl.org

http://www.sdl.org
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that resulted, are fully explained in Chapter .

7.2.2 Insecure software design

As mentioned above, we intended from the beginning that VB would serve as a foundation

for e-voting research of different stripes, including human factors studies. e specifics of this col-

laboration are described in Chapter .

e version of VB used in these studies is modified to emit fine-grained data tracking the

user’s every move: the order of visited screens, the time taken to make choices, and so forth. is

sort of functionality would be considered a heinous breach of voter privacy in a real voting system, so

we took great pains to make very clear the portions of the code that were inserted for human factors

studies. Essential portions of this code were sequestered in a separate module that could be le out

of compilation to ensure that no data collection can happen on a “real” VB; later we made

this distinction even more stark by dividing the VB codebase into two branches in our source

control system.

Of course, a well-known hazard ofmaintainingmultiple long-lived branches of a soware artifact

is the difficulty of keeping improvements (including critical bug fixes) appropriately synchronized

between them. erefore, in , VB was painstakingly merged into a single unified branch.

To retain the ability to reliably compile “evil” (instrumented) and “good” (non-instrumented) ver-

sions at will, I (working in the Security Lab with Kevin Montrose) developed a source-to-source Java

translator called  and used it to create conditional-compilation regions for human-factors code.

It is noteworthy that some of the most interesting human factors results [, studies  and ]

require a voting machine that is malicious (beyond simply capturing privacy-violating timing data).

One study measured how likely voters are to notice if contests are omitted from the review screen;

another, if votes on the review screen are flipped from the voter’s actual selection. We labeled this

evil code with alarming language (including adding the word “evil” to the names of relevant classes

and methods) as well as wrapping it in  conditional-compilation regions so that, as with the data

collection code, there would be no confusion in either code auditing or compilation scenarios.
By analogy with cpp, the ubiquitous preprocessor for the C programming language.
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7.2.3 Concrete representation of data

When it came time to develop the Auditorium network protocol, we chose to use a subset of the S-

expression syntax defined by Rivest []. Previous experiences with peer-to-peer systems that used

the convenient Java ObjectOutputStream for data serialization resulted in protocols that were awk-

wardly bound to particular implementation details of the code, were difficult to debug by observation

of data on the wire, and were inexorably bound to Java.

S-expressions, in particular the canonical representationused inAuditorium, are a general-purpose,

portable data representation designed for maximum readability while at the same time being com-

pletely unambiguous. ey are therefore convenient for debugging while still being suitable for data

that must be hashed or signed. By contrast,  requires a myriad of canonicalization algorithms

when used with digital signatures; we were happy to leave this large suite of functionality out of

VB.

We quickly found S-exps to be convenient for other portions ofVB. ey form the disk for-

mat for our secure logs (as carbon-copies of network traffic, this is unsurprising). Pattern matching

and match capture, which we added to our S-exp library initially to facilitate parsing of Auditorium

messages, subsequently found heavy use at the core of Querifier, our secure log constraints checker,

allowing its rule syntax to be naturally expressed as S-exps. (Querifier is the subject of Chapter .)

Even the human factors branch of VB (Chapter ) dumps user behavior data in S-expressions.

7.3 Metrics

7.3.1 Code size

Table . lists several code size metrics for the modules in VB, including all unit tests. We

aspired to the compactness of Pvote’s  Python source lines [], but the expanded function-

ality of our system, combined with the verbosity of Java (especially when written in clear, modern

object-oriented style) resulted in amuch larger code base. e voteboxmodule (analogous to Pvote’s

functionality) contains nearly twenty times as many lines of code. e complete VB codebase,

however, compares quite favorably with current  systems, making thorough inspection of the
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module semicolons stripped LOC
sexpression 1170 2331

auditorium 1618 3440

supervisor 959 1525

votebox 3629 7339

7376 14635

Table 7.1: Size of the VøȚȃBøǐ trusted codebase. Semicolons refers to the number of lines con-
taining at least one ‘;’ character and is an approximation of the number of statements in the code.
Stripped LOC refers to the number of non-whitespace, non-comment lines of code. e difference is
a crude indicator of the additional syntactic overhead of Java. Note that the ballot preparation tool
is not considered part of the , since it generates ballots that should be audited directly; it is 
semicolons ( stripped lines) of Java code using AWT/Swing graphics.

source code a tractable proposition.

7.4 Performance

By building a prototype implementation of our design, we are able to validate that it operates within

reasonable time and space bounds. Some aspects of VB require “real time” operation while

others can safely take minutes or hours to complete.

e Auditorium design, despite its apparently high computational and bandwidth requirements,

is entirely tractable for a network the size of a typical polling place. For the following performance

estimates, I assume that an individual VB casts at most one ballot every  minutes. is is

an extremely high rate of ballot casting; it is hard to imagine a single voting machine continuously

sustaining a rate of  voters per hour. erefore, this is an excellent upper bound for our estimates. A

polling place will be assumed to have  VBes, which is the highest concentration of electronic

machines per polling place in the United States found in a  survey [].

e election day voting centers described in Chapter  will naturally have larger numbers of

votes cast than traditional small precincts. Voting machines could easily be grouped into subsets

that would have separate Auditorium networks and separate homomorphic tallies. Similarly, over a

multi-day early voting period, each day could be treated distinctly.
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7.4.1 Network load

e most burdensome part of the Auditorium network is its all-to-all connectivity graph. Each mes-

sage a node wishes to broadcast in the Auditorium results in roughly n2 messages on the network.

More exactly, the originating node sends the message to n− 1 neighbors, each of which will forward

the same message to their other neighbors, resulting in n− 2 more messages for each. Each of these

messages should be old news to its recipient by this point, and so the flood stops here. e total num-

ber of messages sent is therefore n + (n− 1)(n− 2); we round up to n2 () for our hypothetical

polling place.

Assuming ballots are cast every  minutes on each of  machines, we have  ballots per hour,

or  messages per hour (since each cast ballot is the result of an authorized-to-cast, cast-ballot,

received-ballot message exchange). Since each Auditorium broadcast results in roughly  actual

message transmissions, we now have , messages per hour, or about  messages per second.

Add to this the periodic heartbeat messages, which (if issued every  minutes by each node) bring

our total to  messages/sec.

Most messages are on the order of  KiB (see Chapter  for concrete figures including the crypto-

graphicmeasures introduced inChapter ). is corresponds to amaximumcross-sectional network

bandwidth requirement of roughly  kbps, which a base-T Ethernet hub can handle with plenty

of headroom for other incidental messages (node join, polls closing, etc.) in the Auditorium.

Not every message fits in one or two packets, however; the authorized-to-cast message, in par-

ticular, contains a complete ballot definition, which in our prototypes (including all pre-rendered 

elements) is roughly a megabyte in size. is traffic now dominates our bandwidth calculations; 

ballots per hour result in up to , cast-ballot messages per hour, or about  per second, which

is about  megabits and requires a faster network.

e following optimization mitigates this problem. Because the largest part of a ballot definition

is its collection of pre-rendered images (see Chapter ), these can be distributed to machines ahead

of time. An authorized-to-cast message would then include only the logical ballot definition itself,

which in turn references these images. e integrity of image files can be verified by including the

cryptographic hash of each image in the ballot definition (or in the image’s filename itself, making
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images self-certifying). In this way we can be sure that even though a ballot definition does not carry

its own images, the correct image will be displayed. A further step is to distribute the entire ballot (a

zip archive) and reference that ballot in an authorized-to-cast simply by name (and cryptographic

hash). With this final optimization, ballot authorization messages are brought down to a very small

fixed size (approximately  KiB like other Auditorium messages).

7.4.2 Bandwidth requirements of the challenge scheme

An important feature of the challenge system described in Chapter  is the ability of outside parties

to see a polling place’s Auditorium log data in real time so that they may assist in the verification

process by decrypting challenge responses.

Were the third-party challenge verifier to reside on the , the problem of supplying it with

log data reduces to the problem of distributing messages to any system in the Auditorium network,

which is shown in Section .. to be entirely tractable for an Ethernet network.

Most likely, the verifier will reside offsite; connectivity may be at  speeds, but a more conser-

vative (and economically practical) assumption is that the polling place may only be connected to

the verifier over a telephone line and at modem speeds. erefore, an analysis of the feasibility of

transmitting log messages in such a bandwidth-constrained environment is warranted.

A single voter’s interaction with the VB booth results in the following sequence of log

messages broadcast in Auditorium:

. an authorized-to-castmessage from the supervisor to the booth (shortly aer the voter enters

the polling place);

. a commit-ballot message broadcast by the booth aer the voter is done voting;

. a ballot-received message from the supervisor, acknowledging receipt of the ballot;

. either a cast-committed-ballot (if the voter casts the ballot as usual) or challenge-committed-

ballot (if the voter challenges);

. a ballot-counted (if the ballot was cast) or foo (if challenged) from the supervisor, which

effectively allows the machine to release its state and wait for the next authorization.
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SEQUENCE MESSAGE KiB (CAST) KiB (CHALLENGE)
 authorized-to-cast 
 commit-ballot . + n
 ballot-received 
 cast-committed-ballot 

challenge . + . n
 ballot-counted 

challenge-response 
TOTAL . + n  + . n

Table 7.2: Bandwidth of Auditorium messages involved in a voting session. Figures are ap-
proximate; Auditorium messages contain about . KiB of overhead and typically include another
. KiB of voting-specific data. e exceptions are commit-ballot, which includes two large numbers
(about  KiB total) per counter, and challenge, which includes one large number (about . KiB)
per counter.

e smallest Auditorium message, including a certificate (with -bit cryptoraphic key), dig-

ital signature, and other basic metadata, is  bytes. (See Appendix A for documentation of the

Auditorium wire protocol.) All Auditorium messages used in VB include at least a message

name, some number of preceding message pointers, and so forth; most still fit in  KiB. is includes

the authorized-to-cast message, provided that ballot contents are not distributed anew with each

authorization, as ballots with prerendered graphics can be quite large. Such an optimization, noted

in Section .., is straightforward and does not impact the semantics of the logs as long as ballots

are referenced by cryptographic hash.

Encrypted ballots (commit-ballotmessages) contain about  KiB of data per counter (each being

an El Gamal ciphertext, represented as a pair of large integers in decimal format, on the order of 

bytes apiece). Challenge responses include a single large integer (r) per counter, for a total of n
2 KiB.

Assuming  selectable elements are on the ballot, both commit and cast messages are  KiB while

challenge response messages are  KiB. An acknowledgment is  KiB. e network overhead of a

single vote is summarized in Table ..

Considering the following scenario:

e ballot is of moderately large size, containing  contests.

 voters, the maximum number of VB booths considered in Section .., are voting
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simultaneously.

e polling place is connected to a challenge center via a K modem (about  KiB/s through-

put).

e challenger must ask the machine to commit to a vote, wait for the verification host to re-

ceive the commitment, then ask the machine to challenge the vote. (e voter must wait for proof

of the booth’s commitment before challenging the system, to ensure that the commitment is made

without knowledge of the impending challenge.) To make this scenario most extreme, we assume

the challenger is “last in line:” his VB’s commitment message must wait behind vote data for

 other voters, totaling about  KiB of queued log data (approximately  seconds). Once this

happens, the subsequent messages (the challenge and challenge response) happen quickly. e total

delay experienced by the challenger in this case is between two and three minutes.

7.4.3 Storage

Storage is the least expensive andmost plentiful resource in a VB; assuming our worst-case hy-

pothesis from Section .., a machinemight receive messages per second, of which a third contain

large ballot files, but becausemost of these are duplicates (thanks to flooding), we need store very few.

We rely on our original estimate of  ballots per hour, or  per day (assuming the polling place

is open for  hours), whichmeans  smallmessages (cast-ballot and received-ballot; heartbeats

are on this order of magnitude as well) and another  large messages (authorized-to-cast).

e large messages dwarf the smaller ones, so we have roughly   of data to store, support-

able even with solid-state flash memory. With a hard drive we have the luxury of preserving this data

forever; a VB with a hard drive needs no “clear” function, making it still harder to acciden-

tally destroy election records. A caching strategy for ballot definitions, as described in Section ..,

would reduce even this requirement considerably; storing only small messages now, we need on the

order of a few megabytes, allowing even flash memory to operate without needing a “clear” function.
is assumes a relatively noise-free line (allowing full K negotiation) and a direct connection protocol (that is,

roughly equivalent to dumping Auditorium data over a serial port at an equivalent speed).
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7.4.4  demands of encryption

Current electronic voting systems are, at heart, general-purpose computers using commodity pro-

cessors. Some are quite powerful:

e Premier/Diebold AccuVote TS used a  MHz Hitachi SuperH SHA []; the Accu-

Vote TSx uses a  MHz PXA (an  architecture chip in Intel’s, now Marvell’s, XScale

line). []

e Sequoia AVC Edge contains a  MHz National Semiconductor Geode (an x architec-

ture embedded chip). []

On the other hand, voting systems using custom embedded operating systems (and presenting

substantially simpler user experiences) can get by with far more modest hardware:

e  iVotronic uses a  MHz Intel EX. []

e Hart InterCivic eSlate uses a  MHz Freescale Semiconductor ColdFire MCF (based

on the Motorola  architecture). []

e VB is designed to run atop this sort of general-purpose computer hardware, so the

computational effort needed to participate inAuditoriummust bewithin the bounds of such a system.

ree types of cyptographic operations commonly occur in VB:

Cryptographic hash computation (-);

 signature operations; and

El Gamal encryption operations.

We used OpenSSL’s built-in speed microbenchmark tool on an unloaded  MHz Pentium 

with   (OpenSSL ..e compiled with -march=i686, Linux kernel ..). is is, bymod-

ern standards, a dinosaur; indeed, many common mobile phones today deliver more horsepower. It

is used here as an extreme case, a model of the kind of low-end, commodity hardware that might be

used for inexpensive voting systems.
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is example test machine can perform  -bit  verifications and  signatures per sec-

ond; it hashes   of data per second with -. Such performance is more than sufficient for

the workload described here. (A deployment of Auditorium requiring substantially greater crypto-

graphic performance could be achieved straightforwardly by provisioning hardware adequate to the

task.)

In practice, hardware used for testing and demonstration—including severalMacintosh comput-

ers and PC laptops and desktops, ranging from  MHz to several gigahertz—was mostly idle while

running VB.

Our El Gamal cryptosystem does not similarly benefit from a well-optimized external library;

VB includes a pure-Java implementation of the El Gamal cryptosystem, relying on Java’s Big-

Integer class. To characterize the  demands of El Gamal encryption operations, we bench-

marked the encryption of a reference  candidate ballot. On a Pentium M . GHz laptop it took

.  seconds, and on an Opteron . GHz server it took .  seconds.

We also benchmarked the decryption, using the r-values generated by the encryption function

(simulating the work of a verification machine in the immediate ballot challenge protocol). On the

laptop, this decryption took .  seconds, and on the server it took .  seconds. A third

party challenge center supervising several hundred precincts at once (Harris County, which contains

Houston, has about  precincts), may need to handle  ballots per second (using the estimated

ballot casting rate and number of voting machines from Section ..). If every single ballot were

a challenge,  Opteron s would therefore need to be dedicated to the task of decrypting them.

A more reasonable challenge rate, for example  of ballots cast, reduces the problem to a more

manageable size (the example server  would be roughly half idle).

It is important to note that decryption is slightlymore complex than encryption in our cryptosys-

tem. To make our encryption function additively homomorphic, we exponentiate a group member

(called f in Equation .) by the plaintext counter (called c in Equation .). (e result is that when

this value is multiplied, the original counter gets added “in the exponent.”) Because discrete log is a

hard problem, this exponentiation cannot be reversed. Instead, our implementation stores a precom-

puted table of encryptions of low counter values. We assume that, in real elections, these counters
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will never be above some reasonable threshold (we chose ,). Supporting counters larger than

our precomputed table would require a very expensive search for the proper value.

is is never an issue in practice, since individual ballots only ever encrypt the values  and ,

and there will never be more than a few thousand votes per day in a given precinct. While there

may be a substantially larger number of votes across a large city, the election official only needs to

perform the homomorphic addition and decryption on a precinct-by-precinct basis. (As noted in

Section ., larger precincts such as vote centers can be subdivided into Auditorium networks of

a manageable size.) is also allows election officials to derive per-precinct subtotals, which are

customarily reported today and are not considered to violate voter privacy. Final election-night tallies

are computed by adding the plaintext sums from each precinct.



CHAPTER 8

EXTENSION: REMOTE VOTING

8.1 Introduction

Never. is, the answer given by e-voting security researchers when asked when we will be able

to vote in national elections over the Internet, is unsatisfying to many because of the tremendous

convenience it would seem to afford (see, e.g., Alvarez and Hall []). e number of endeavors, from

personal entertainment to securities trading, that have been profitably brought online would imply

that the Internet can improve any task that does not absolutely require one to be physically present.

Voting, unfortunately, requires absolute trust in two factors that cannot be adequately controlled

in the residential Internet scenario: environment and equipment. evoter’s may be compromised;

the votermay be coerced. It is not the only such task; academic testing, for example, requires a testing

environment free of distraction, collusion, and unauthorized assistance.

Participating in national elections from the comfort of one’s home computer may never be prac-

tical or secure, but remote voting can be both. Voters in many jurisdictions are currently permitted

to cast provisional ballots in situations where their eligibility to vote is in doubt; the voter’s identifi-

cation is submitted along with the sealed ballot for consideration by elections officials. Postal voting

(or “vote-by-mail”) functions similarly. Each of these schemes trades a certain amount of anonymity

for the ability to determine the eligibility of a prospective voter.

ese techniques inspire the following vision of practical electronic remote voting. A  that

encrypts individual ballots provides the sealed ballot described above; when digitally signed along

with plaintext attesting the identity of the voter, it becomes an electronic replica of the conventional
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provisional ballot, albeit one that can travel faster and more safely than a postal envelope.

Voters far from their home precincts could therefore visit a remote voting center: a facility main-

tained and supervised by government officials, perhaps in foreign embassies or in controlled areas

on military bases and ships. e establishment of such a “remote precinct” for voters far from home

dates at least to , in which soldiers fighting in the American Civil War voted in temporary bat-

tlefield polling places [].

e version of the remote voting center described here consists of one or more electronic voting

booths and a registration system. Voters present their personal identification, and are then directed

to cast a ballot in a private electronic voting booth with the proper local ballot (provided in advance

by the election director of the voter’s home precinct). e cast ballot is encrypted and returned

to the registration system, which then in turn wraps the ballot ciphertext in the voter’s identifying

information. is might include a scanned signature or  card or even a digital photograph of the

voter taken at the time of voting. is double enclosure is then digitally signed by the voting center

and posted on a public “bulletin board” where it may be examined and canvassed by the voter’s home

election officials. Once the election officials have determined that the ballot was cast properly (e.g.,

the voter’s identification matched up with records on file and the proper ballot definition was used),

then they can approve the still-encrypted ballot for inclusion in the final tally.

In this chapter I review the procedures currently in place for postal and provisional balloting (Sec-

tion .), giving special attention to the security guarantees made to the voter for these (Section .),

and finishing with a sketch of remote voting using the VB platform (Section .).

8.2 Provisional and postal voting

Postal voting is used widely in the U.S. and is growing in popularity. e state of Oregon, for example,

votes exclusively by mail. Many states offer “no fault” postal voting; voters may declare their desire

to vote by mail without requiring any reason. In California, voters may declare their desire to vote

exclusively by mail, and need never again cast ballots in person.

Amonth in advance of the proper election date, ballots aremailed to these voters, giving the voter

time to cast the ballot or request an alternative ballot if the original is lost or spoiled. Completed
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ballots are placed in an opaque return envelope. e back of this envelope has designated areas for

the voter to inscribe her personal identifying information, including her signature. A paper flap (or,

in some cases, another enclosing envelope) conceals this personal information while the ballot is in

transit.

When envelopes arrive at the elections office, they are counted and stored. Each envelope’s signa-

ture and personal information is verified by hand against the voter’s registration data. If an envelope

is rejected, election officials may then attempt to contact the voter to offer an additional opportunity

to cast a vote, assuming the election is still ongoing. Ballots that are determined to be legitimate are

then removed from their envelopes and stored as any other ballot might be stored. ese ballots can

then be tabulated using the same optical scan machinery that can be used for paper ballots cast in

traditional precincts.

Provisional voting, required as part of the  Help America Vote Act, is semantically similar to

postal voting. Provisional voting occurs when a voter arrives at what she believes to be the proper

precinct only to discover that she is absent from the precinct’s registry of voters. At that point, she

may conclude that there was an error and declare the desire to cast a vote, regardless.

Procedures for this vary from voting system to voting system. One common solution is that the

voter is handed a paper ballot along with an envelope. e paper ballot is filled out, as normal. e

envelope, much like a postal voting envelope, contains information about the voter’s identity along

with why he or she claims the right to cast a vote in this particular precinct. Some  voting systems

offer similar functionality, tagging provisional votes with an identifier of some kind that corresponds

to paper records describing the voter’s situation.

Provisional votes are generally not tallied until a recount occurs or if the number of provisional

votes is large enough to impact the election’s outcome. At this stage, election officials hold a public

hearing to individually discuss each provisional voter and determine whether his or her vote will be

counted. Once the envelope has been validated, the inner ballot can be removed and tabulated.
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8.3 Security and privacy of remote voting

8.3.1 Conventional approaches

Voter anonymity is necessarily harder to safeguard when the voter’s name, address, and signature ac-

company each ballot. Present-day provisional and postal voting attempt to preserve privacy through

a combination of technology (ballots are enclosed in opaque envelopes) and procedure (envelopes

are only opened if eligible, and once validated, a ballot is separated from its envelope).

Postal voting, however, suffers from several obvious problems. e postal mail channel is slow

and not sufficiently reliable, particularly when delivering mail overseas. Furthermore, there are a

wide variety of opportunities for election fraud with postal voting, ranging from outright bribery

and coercion (i.e., selling unvoted ballots) to attacks upon and within the postal system (e.g., postal

workers destroying or tampering with ballots). While some voters may detect that their ballots failed

to arrive at their destination, it would be difficult to automatically detect and correct such errors. In

cases where the postal delivery channel is too slow or too lossy, multiple round-trips with the voter

are likely infeasible in the time allotted for voting.

Provisional voting, when performed inside a properly supervised voting location, is more robust

against bribery and coercion, since the vote will have been cast in the privacy of a voting booth.

Likewise, there are fewer concerns about loss or damage to votes while in transit. Nonetheless, as

with postal voting, the ties between the voter’s identity and ballot allow subsequent opportunities for

fraud, whether the provisional vote is cast on paper or with current-generation  systems. Election

officials, therefore, must be trusted to properly manage the process to preserve voters’ privacy.

Both postal and provisional voting share the property that a variety of attacks can be detected even

when they cannot necessarily be corrected. Voters can detect whether their ballots were received and

whether they were tabulated. ey cannot learn whether their ballots were tabulated accurately.

8.3.2 Goals for a networked replacement

A remote voting system design that proposes replaces postal mail with Internet transmission must

retain comparable security and privacy semantics to postal or provisional voting. While the ballot
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Figure 8.1: Voting with RemoteBox. A database () is furnished in advance, containing a blank
ballot design for each voter allowed to vote at this location. On election day, the voter presents iden-
tification () which is used to select the correct ballot for voting. As in a conventional polling place,
the blank ballot is sent to a VB () for voter input, and returned in the form of an encrypted
cast ballot (). e supervisor combines the result with the voter’s identification and signs it (),
broadcasting it to the polling place for storage as well as on a one-way channel to a public medium
().

should be accompanied by information identifying the voter so that only eligible remote votes are

counted, there must still be some sort of opaque envelope; the voter’s choices must be concealed

until eligibility is determined, and then separated from the voter’s identity before tabulation.

Problems should also be detectable (even if they cannot be immediately corrected) in such a

system. For example, as Internet hosts are indisputably vulnerable to denial of service attacks, the

voter must still be allowed to cast a ballot regardless of whether or not the election authority can be

reached from the polling place. at is, despite the supposition of a network connection, the remote

polling place cannot use “online” methods that require constant uptime of that connection. Finally,

such a design should improve on postal voting by providing a voting environment that resists voter

coercion and fraud.
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8.4 RemoteBox: connecting remote precincts over the net

8.4.1 Remote electronic voting

e proposed remote voting environment is built atop the VB design of Chapter . e “Re-

moteBox” remote polling place adds the following to a VB polling place:

A remote polling place, maintained and monitored by trusted / non-partisan government

officials. Such a facility might exist in embassies, consulates, and military bases—anywhere a

large population of remote voters may be served.

A database of eligible remote voters, mapping name and home precinct information to the

correct blank ballot design for that voter. (Jurisdictions wishing to allow their voters to cast

remote electronic ballots must furnish this information in advance.)

A requirement that the voter present identification on election day: a government-issued 

or voter registration card, plus an interactive authenticator like a handwritten signature. Just

as with a postal or provisional ballot, the voter must be identified so that he or she may be

given the correct ballot, and so that election officials can decide whether the voter’s cast ballot

should be counted.

e notion of a provisional electronic ballot, which is a signed enclosure certifying the iden-

tity of the voter and her encrypted vote. is is an analogue of the conventional provisional

ballot envelope (identifying the voter outside and sealing her choices inside) described in Sec-

tion ..

A one-way channel to a public medium, for posting provisional electronic ballots. is could

be an online channel such as an Internet link (perhaps on the other side of a data diode [])

or an offline one such as a - burner.

Figure . illustrates how these components fit together on election day.
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8.4.2 Ballot definitions

An obvious complexity in this system lies in managing the ballot definitions, which will vary widely

from county to county and state to state. If there were a single, standardized, national voting system,

particularly based on pre-rendered ballots, then these ballot definitions might also be collected by

a centralized organization within the federal government. State- and locality-specific issues (e.g.,

Texas requires a “straight ticket” voting option while California forbids it) would be encoded in the

ballot definitions, requiring the remote voting machines to be sufficiently generic to accommodate

any voter from any jurisdiction. Current  systems’ ballot preparation tools could be augmented

to output a standardized description of the ballot which could then be processed independently.

8.4.3 Cryptographic and pragmatic details

Key management. As described in Chapter , VB requires that every piece of voting equip-

ment (booths and supervisors) to have its own local key material for digital signatures. Moreover,

each jurisdiction’s election administration office (county clerk, etc.) must have individual public

keys such that ballots cast remotely may be encrypted for their eyes only. is problem is similar in

scope to the issues surrounding ballot definitions (described in the prior section). Again, assuming

the existence of a centralized organization within the federal government, this key material could

be collected and redistributed in advance of elections. Ballot definitions could likewise be centrally

collected and disseminated. Each ballot definition would include the appropriate public key to use

when encrypting votes cast with that ballot.

Bulletin boards. A standard feature of many cryptographic voting protocols is the concept of a

bulletin board where ballots are posted for all the world to see. is could serve as a mechanism

for disseminating the results from remote voting precincts back to their proper home for tabula-

tion. With proper key management and ballot definition distribution, performed in advance of the

election, local election officials should easily be able to identify ballots on the bulletin board which

are intended for their local consumption. ese ballots would be encrypted with local election of-

ficials’ public keys and signed with the keys of the remote voting system. e entire bulletin board
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from each remote precinct could then be signed by the remote precinct itself, protecting the bulletin

board against tampering.

Because the bulletin board publishes encrypted ballots alongside the plaintext identity of the

voter, there may be some danger of very long-term anonymity compromises due to hypothetical

future computational advances or other weaknesses in the encryption used. Any mitigation of this

risk is going to require either weakening the binding between a voter and his or her encrypted vote,

or making the channel for distributing these votes less observable to the public than a bulletin board.

For example, the bulletin board could hold only statistically-hiding vote commitments, rather than

the encrypted ballots themselves. In such a scheme the actual ballots must be transmitted privately

and verified against the public bulletin board (as in, e.g., Moran and Naor []).

Networks. Ultimately, the ballots (on a bulletin board or otherwise) must be transmitted from re-

mote polling places to election officials. As a real-time feed is unnecessary (and possibly infeasible

for some remote locations), ballots may be batched and sent infrequently, perhaps at the end of each

day.

is allows some flexibility in how exactly to transmit ballot data. For example, in order to isolate

the remote precinct from the Internet, the supervisor console might burn a -. is could be

transmitted via an overnight courier or hand-carried to a computer connected to any sort of network,

whether public or private. All the remote results could be aggregated (but not tabulated) by the

same centralized federal agency that coordinated the distribution of cryptographic keys and ballot

definitions.

If this agency should suffer sustained attacks on its Internet connection, then alternate procedures

could be used. All of the election results could be disseminated through slower means (mailing s,

etc.). All that matters is that the various cryptographic signatures are properly verified, which can be

done both by local election officials and by the remote voting center’s officials.

Various attacks. A voter with access to multiple remote voting centers (or, perhaps, a coalition of

attackers using the stolen identity of one valid voter) could use the system described thus far to cast

one vote per voting center. iswould not necessarily be detected during the voting day. Nonetheless,
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each encrypted vote would be contained in a public envelope with the voter’s identifying information

present. Election authorities could certainly detect multiple votes having been cast, exactly as they

can in the case of postal or provisional voting. It then becomes a policy problem to determine which

vote should be counted and whether a crime has been committed. Alternatively, voters could be

required to declare, in advance, which remote voting center they intend to use. When a voter shows

up at the proper remote voting center, his or her name is present and the vote proceeds normally. At

other remote voting centers, the voter would be absent from the database and could then only vote

provisionally.

8.5 Summary

e remote polling place is a model for networked remote voting that brings the benefits of  vot-

ing (convenience, speed, fault-tolerance) to provisional and postal voting. e security and privacy

guarantees of these conventional remote voting methods are met or exceeded by this approach. As

shown in Section ., the VB system design can be straightforwardly extended to accommo-

date this voting model by enclosing anonymized, encrypted ballots in a public wrapper identifying

the voter. A similar transformation (comprising a remote polling place and double-enclosure pro-

visional ballots) should be applicable to any -style voting system, provided that it is engineered

(or re-engineered) with the necessary properties from VB: it must accommodate a potentially

large number of ballot designs (perhaps by loading them on-the-fly per voter), and it must provide

the essential “opaque envelope” by encrypting each individual cast ballot.



CHAPTER 9

CONCLUSION

In this thesis I have shown how the VB system design is a response to threats, real and hy-

pothesized, against the trustworthiness of electronic voting. Recognizing that voters prefer a -

style system, and that such systems have advantages over non-electronic voting systems, I and my

colleagues in the Computer Security Lab at Rice University created VB: a system that super-

ficially resembles today’s flawed electronic voting machines, but is built on sound techniques from

distributed systems, cryptography, and e-voting security research.

VB uses a novel networking infrastructure called Auditorium to coordinate election-day

operations and replicate ballots and auditing records. e resulting logs, which contain powerful

proofs of integrity and order, withstand scrutiny even when machines are damaged or faulty and

when data is lost or incomplete. is work spurred creation of the Querifier log analyzer, the first

tool designed to evaluate arbitrary predicates on secure logs of this form. Electronic voting over

Auditorium is an excellent substitute for today’s provisional and postal voting, offering pragmatic

benefits and additional security properties.

To address the vexing problem of soware independence, VB adapts and enhances work

by Benaloh on user-initiated auditing. e ballot challenge scheme allows any voter to force any

VB to prove its correctness and honesty, on election day and in the polling place, in such a

way that the machine cannot guess that it may be under test. By combining the challenge system

with Auditorium, VB offers would-be challengers the ability to make use of an offsite third

party of their choosing to assist with the decryption process needed to verify the machine’s challenge

response, thus overcoming the awkwardness of the corresponding step in Benaloh’s original proposal.
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Borrowing a technique from Yee, VB moves inessential graphics code out of the critical

voting booth soware, resulting in a smaller (and more easily analyzed) soware artifact. e pre-

rendered ballots used with this technique can be created—and audited—long before election day.

Inspired by work by Sastry, VB destroys most of its data structures between voters to avoid

accidental data leakage from one session to the next.

Some of the elements of VB are not novel in themselves; the system borrows sophisticated

techniques, where appropriate, from other researchers in the field. Others (particularly Auditorium)

are entirely new inventions, inspired by the problems identified by other scholars as well as my own

observations in the field. Additionally, VB is a novel demonstration of the way in which these

various approaches may be integrated in a coherent whole to achieve the project’s overall security

goals.

e future of VB is multi-dimensional. Along one axis, it continues to demonstrate value

as a research platform. As described above, VB brings computer science techniques (dis-

tributed systems; secure logs; cryptography) to bear on certain aspects of the voting problem: re-

liability, integrity and audit, and verification of correct operation. e solutions used in VB

have been carefully chosen so as not to erode the voter’s privacy, but it is important to note that these

measures do little to increase privacy protections. A malicious VB cannot destroy or alter au-

diting data without detection, nor can it satisfy a cryptographic challenge with an incorrect ballot.

But it could leak the voter’s choices in any number of ways: by choosing a non-random r (allowing

an untrusted party to decrypt votes), by saving r values somewhere, or even by saving vote plaintext

somewhere. It could distribute vote plaintexts on the network, or over a wireless channel.

However, these problems exist for any voting technology currently proposed or in use, including

paper ballots (e.g., malicious optical scanners, or hidden cameras in the polling place). e voter can

easily violate his own privacy by bringing a cameraphone into the booth with him. Privacy, therefore,

is a large and open problem. Improving the state of the art here is a laudable goal that is also beyond

the scope of this thesis.

Other scholars continue to use VB in their investigations. Human factors research, into

such questions as “which navigation schemes are best?” (viz., current work by Greene []) and “do
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voters notice malfunctions or malice?” (as in a thesis by Everett []) are best conducted using a real

voting system such as VB.

Additional security features, such as non-interactive zero-knowledge proofs () and trusted

computing techniques (), are the subject of work by other researchers in our lab, and future work

of this sort may involve actually developing a minimal Java runtime (of the sort used today in some

embedded contexts) upon which to deploy a very compact VB. Pragmatic additions to the

system—such as the integration of additional user input devices, ballot printers, voter registration

mechanisms, and so on—may not be of interest from a security or reliability standpoint, but would

flesh out the system and start to move it out of the laboratory and toward a realizable product.

is, then, is the second direction along which VB may begin to have impact. Techniques,

designs, and even code arising from this work can find use in commercial voting systems. I have

taken care to design a system that is practical for new implementations on very modest computer

hardware; crucial elements of the system architecture may even be added on to existing systems

to improve their security properties. For example, the techniques presented in Chapter  could be

applied to non- electronic voting equipment; an Auditorium network of optical ballot scanners

would bring robustness and security to paper ballots.

Beyond electronic voting, I believe some of these inventions can be applied to other problem

domains. e Auditorium network, in particular, should be useful in systems that must maintain

believable records that are tamper-evident, provably time-stamped, and recoverable in case of failure

or malice. is might include games that require defense against cheating; distributed collaborative

document editing using Auditorium’s provable ordering semantics; and Internet-scale messaging

systems (such as email, instant messaging) and publishing systems (e.g., Facebook and Twitter, the

subject of recently published work []).
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AUDITORIUM PROTOCOL FOR VOTING

A.1 Auditorium messages

e Auditorium system described in Chapter  is a self-organizing, decentralized network structure

designed to facilitate the creation and exchange of secure log data. Although developed forVB,

it is able to support general peer-to-peer applications that involve secure logging or timeline entan-

glement.

In this appendix I detail the data structures that constitutemessages inAuditoriumandVB.

As noted in Chapter , the syntax used by Auditorium for log messages—whether on the wire or

in persistent storage—is based on S-expressions, the recursive prefix-notation symbolic expressions

developed for  byMcCarthy []. e specific representation chosen for Auditorium is borrowed

fromRivest [], chosen (as outlinedmore fully in Section ..) for its unambiguous and convenient

representation in cryptographic and networking contexts (Rivest’s “canonical” encoding).

e following sections catalog the specific messages used in VB; they form the protocol

used for network communication as well as the storage format for secure logs in the system. ey

are shown not in canonical encoding but in a more friendly representation familiar to users of 

(referred to by Rivest as “advanced” encoding).

A.1.1 Data structures

e following data structures can be found inside auditorium messages.
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Message Pointer

A message pointer is a reference to a particular message.

(ptr [node-id] [sequence-number] [hash])

node-id: is machine serial number uniquely identifies the machine which sent the message.

sequence-number: is message number is an index into the sequence of messages sent by

the sending machine.

hash: is is the SHA- hash of the message in its canonical S-expression format as it was

placed on the wire.

erefore, the <ptr> structure uniquely describes a single message from an Auditorium node, in-

cluding the message’s hash (for integrity checking), and implicitly attesting to the state and integrity

of that node’s entire log (thanks to hash chaining).

Host Pointer

A host pointer is a reference to a particular host on the network.

(host [node-id] [ip] [port])

node-id: is machine serial number uniquely identifies the machine which sent the message.

ip: is is the IP address of the referenced host in dotted-decimal format

port: is is the port that the host is listening for incoming connections on. It is an integer

formatted as a string.

Certificates and Signatures

A certificate is a key signed by an identity:

(cert <signature>)

A key combines an  modulus and exponent and contains an id (such as the  of a VB

booth or certificate authority) and an annotation (arbitrary text for the convenience of humans ex-

amining the file, such as “certificate authority” or “booth”):
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(key [id] [annotation] [mod] [exp])

A signature is:

(signature [id] [sigdata] {payload})

erefore, a certificate for votebox-5 signed by the certificate authority (with key  ca) has the

form:

(cert (signature ca
[sigdata]
(key votebox-5 booth [mod] [exp])))

A.1.2 Messages

All auditorium messages have the following format:

([name] <host-pointer> [sequence-number] {payload})

name: Identifies the type of Auditorium message. May be one of:

discover

discover-reply

join

join-reply

announce

host: A reference to the sender of the message (see “Host pointer” above).

sequence-number: A unique identifier (across only messages from this sender) for the mes-

sage.

payload: e contents of the message.

Discover

ismessage is broadcast by a host who seeks information about other auditorium hosts nearby. is

is a special message that may be broadcast on a local network segment via  if the sender does not
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know any  addresses to connect to. e payload is a host pointer to the host that the responding

host should send its discover-reply to.

Example:

(discover <ptr> <seqno> <host>)

Discover Reply

is message is sent as a reply to a host who broadcast a discover message. e payload consists of

all known hosts. Even if discover is sent via , the reply—as well as all subsequent Auditorium

messages—should be sent via a  stream.

Example:

(discover-reply <ptr> <seqno> (<host> <host> ... <host>))

Join

is message is sent by a host who wants to start a link with another host. ere is no payload.

Example:

(join <ptr> <seqno>)

Join Reply

is message is sent in reply to a join in the event that the joiner is considered acceptable by the

receiver of a join. In the event that the joiner is not considered acceptable, the socket is simply closed

by the receiver of the join. e payload contains a list of message pointers, indicating messages that

have been seen on the network but not yet referenced by a message; the purpose is to give the newly

joined node an opportunity to create its firstmessage in context of the of time already in progress.

(Alternatively, all new nodes would be forced to either wait to hear a message in order to “find their

place” in the timeline, or simply broadcast an initial message with no predecessor whatsoever.)

Example:

(join-reply <ptr> <seqno> (<ptr> <ptr> ... <ptr>))
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Announce

e announcemessage is theworkhorse of Auditorium; unlike themessages described thus far, which

are concerned with the construction of the network structure, announce is used for communication

between nodes. e payload is variable, and any S-expression useful for the application (typically a

signed message) may be inserted here.

For convenience, we define a signed-message structure as follows:

(signed-message <certificate> <signature>)

e <signature> is as defined above. Such a signed-message structure would be used in the

payload of an announce message.

We also add the succeeds structure, allowing us to combine a new message text (the payload)

with a number of predecessor messages (the list of message pointers):

(succeeds <list-of-ptrs> <payload>)

An extended, concrete example, involving announce as well as the signed-message, succeeds,

and ptr data structures (semicolons are used to set off comments that are ignored by the parser):

(announce
(host votebox-5 1.2.3.4 5555) ; the sender in <hostptr> format
1 ; sequence number for the messsage
(signed-message ; the payload is signed

(cert ; certificate of the sender/signer
(signature ca [sig-data] (key votebox-5 booth [mod] [exponent])))

(signature ; the signature itself
votebox-5 ; keyid of the signer
[sigdata]
(succeeds

( ; list of prior messages
(ptr votebox-1 38 [SHA1-hash])
(ptr votebox-0 15 [SHA1-hash])

)
”hello world”)))) ; finally, the message contents

A.2 Voting messages

e foregoing messages form a protocol that is sufficient to start an Auditorium network and ex-

change information among nodes. In order to conduct an election using a number of VB



APPENDIX A AUDITORIUM PROTOCOL FOR VOTING 118

booths and supervisors, a subprotocol is required. e following messages are to be understood as

the innermost payload of the announced signed message outlined above.

A.2.1 Sent by supervisor

(polls-open local-timestamp keyword)

e keyword is given to the poll workers on the morning of the election, in order to

guarantee the results were not fabricated in advance.

e local-timestamp may be unnecessary here.

State change: Booths become active, and the Supervisor can begin transmitting authorized-

to-cast messages.

(authorized-to-cast node-id authorization-code ballot)

e authorization-code is a stream of random bytes determined by the supervisor. (It

cannot be guaranteed that this will be unique to the election or to any machine.)

State change: e booth’s state changes to “In Use”, and the booth loads the ballot and

prepares to accept user input.

(override-cast node-id authorization-code)

State change: e Booth shows a message that the ballot is about to be overridden and

cast, and asks for confirmation.

(override-cancel node-id authorization-code)

State change: e Booth shows a message that the ballot is about to be overridden and

cancelled, and asks for confirmation.

(ballot-received node-id authorization-code)

reply to cast-ballot (or commit-ballot when the challenge system is in use)



APPENDIX A AUDITORIUM PROTOCOL FOR VOTING 119

State change: e Booth informs the voter that the ballot has been received. If the chal-

lenge system (Chapter ) is not in use, this is the end of the voting session; the booth

changes to the “Ready” state, and the authorization-code is de-authorized.

(ballot-counted node-id authorization-code)

reply to cast-committed-ballot, used in conjunction with the challenge system when a

ballot is not challenged but is instead confirmed by the voter.

State change: e Booth informs the voter that the ballot has been successfully cast; the

voter’s session is over. e machine changes to “Ready”, and the authorization-code is

de-authorized.

(challenge-response node-id authorization-code)

reply to challenge, used during a ballot challenge.

State change: e Booth informs the voter that the ballot challenge has been successfully

issued; the voting session is over. emachine changes to “Ready”, and the authorization-

code is de-authorized.

(supervisor local-timestamp supervisor-status)

supervisor-status can be active or inactive

is message is sent once when the supervisor connects to Auditorium, and periodically

as a status message.

(assign-label node-id new-label)

e supervisor shows themachine’s new label. Also, the booth should remember its label

so that if a new supervisor comes on, it doesn’t need to relabel every machine.

(polls-closed local-timestamp)

State change: Booths go into inactive mode, and the Supervisor can no longer authorize

voters. Tallying functionality may become available.
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(activated ((status)*))

is is sent when a supervisor console is activated by a user (user presses the big “Ac-

tivate is Console” button that actually turns on the UI). Why do we need an “active”

supervisor? Because of automatic booth labelling. If the super is supposed to automati-

cally assign a label to every booth as the booth appears, we can’t have backup supervisors

competing to assign labels! So the only super that should be labelling is the “active” one,

which is the one that most recently issued the activated message. Also, only a supervi-

sor that is active can authorize voters, or open and close the polls. ese UI controls are

hidden on all inactive supervisors.

State change: e Supervisor that sent this message becomes active and can authorize

voters, and all other Supervisormachines become inactive and show an “Activate” button.

is message contains a list of the last-known status of every machine on the network

that the supervisor knows about. If a machine was not in the list, or has a status update,

it should in turn broadcast its own status.

e status message is a wrapper for a supervisor’s or votebox’s status, that contains the

serial number of the machine that the status corresponds to. Since status messages are

normally sent by themselves over Auditorium, they are implicitly tied to their sender.

However, when contained within the activated message, the supervisor or votebox mes-

sage has no notion of who sent it, thus the status wrapper. Status looks like: (status

node-id (supervisor|votebox))

(polls-open? keyword)

A query to ask other machines if they know whether the polls are open

Sent when a supervisor is activated, and doesn’t know if the polls are open

Upon receiving this message, a machine will check its logs to see if it thinks the polls are

open, and then will reply with a last-polls-open message if so.
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A.2.2 Sent by booths

(votebox label votebox-status battery-health protected-count public-count)

Any inconsistencies are reported to the Supervisor (maybe).

votebox-status can be ready or in-use

label is the machine’s label if it knows it already, otherwise it will report  for unlabeled

is message is sent once when the booth connects to Auditorium, and periodically as a

status message.

is allows a booth to disconnect from the network, and upon reconnecting inform the

supervisor(s) that it is still in use.

(last-polls-open polls-open-message)

is is only necessary if we want other machines to inform the new active supervisor

whether the polls are open.

e machines will check their own logs and report the last polls-open message they

saw, iff it is not succeeded by a polls-closed message (in which case, the machine would

simply not respond).

reply to polls-open?

If anymachine responds, the supervisor will check that themessage is a valid polls-open

message, and that the keywordmatches the one entered by the poll worker. If these condi-

tions are met, the supervisor will silently change to polls opened status, and allow access

to the authorize button.

(cast-ballot authorization-code encrypted-ballot)

Note: Only used when the challenge scheme Chapter  is not in use. Otherwise, commit-

ballot is used.

reply to authorized-to-cast

must happen between polls-open and polls-closed

State change: eBoothwaits for a reply from the Supervisor that the ballot was received.
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(commit-ballot authorization-code encrypted-ballot)

Note: Only used when the challenge scheme Chapter  is in use. Otherwise, cast-ballot

is used.

reply to authorized-to-cast

must happen between polls-open and polls-closed

State change: eBoothwaits for a reply from the Supervisor that the ballot was received.

(cast-committed-ballot authorization-code)

Note: Only used when the challenge scheme Chapter  is in use. Otherwise, cast-ballot

is used.

is message is sent when the voter chooses not to challenge a vote.

must happen between polls-open and polls-closed

State change: eBoothwaits for a reply from the Supervisor that the ballot was received.

(challenge authorization-code challenge response)

note: only used when the challenge scheme Chapter  is in use. otherwise, cast-ballot is

used.

ismessage is sent when the voter chooses to challenge a vote. e challenge response is

a single integer (the one-timedecryption key for the ballot corresponding to the authorization-

code).

must happen between polls-open and polls-closed

state change: the booth waits for a reply from the supervisor that the challenge was re-

ceived.

(override-cast-confirm authorization-code encrypted-ballot)

reply to override-cast

must happen between polls-open and polls-closed

State change: e booth changes to “Ready” on the Supervisor, and the authorization-

code is de-authorized. (If a ballot-received reply is expected, this is handled by that
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message instead)

(override-cast-deny authorization-code)

reply to override-cast

must happen between polls-open and polls-closed

State change: e Booth allows the voter to resume voting from where he le off.

(override-cancel-confirm authorization-code)

reply to override-cancel

must happen between polls-open and polls-closed

State change: e booth changes to “Ready” on the Supervisor, and the authorization-

code is de-authorized.

(override-cancel-deny authorization-code)

reply to override-cancel

must happen between polls-open and polls-closed

State change: e Booth allows the voter to resume voting from where he le off.



APPENDIX B

HIGHLIGHT GRAPHICS

ese graphics, summarizing the VB project, were prepared in  for use as “highlights” in

 publications.
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APPENDIX C

INTERNET RESOURCES

More information about this project will be available for as long as possible at the following s:

e VB homepage, including source code, binary executables, and operating documen-

tation for the VB prototype, can be found at http://votebox.cs.rice.edu/ .

e VB source code is hosted at http://votebox.googlecode.com/ .

is document, along with errata, will be archived by the author at

http://dsandler.org/research/thesis .

http://votebox.cs.rice.edu/
http://votebox.googlecode.com/
http://dsandler.org/research/thesis
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